
Cavendish Laboratory
JJ Thomson Avenue

Cambridge CB3 0HE
UK

MRO Delay Line

rev 0.2

13 October 2006

E. B. Seneta
bodie@mrao.cam.ac.uk

Socket Initialisation Protocol for Delay Line
Computers

Objective
To describe the protocol by which network connections are to be made and broken
between delay line computers.

Scope
This document describes how to make and break network connections for the
purpose of sending and receiving delay line command, command data, status and
telemetry messages. Specifically, it states the circumstances under which computers
can initiate connection and disconnection attempts and how their targets should
respond in order to establish or cease dialogue. This document does not address the
other forms of network communication that may be required such as the NTP or ssh
protocols, which already have well documented methods of establishing
communication.

 1 Introduction
The delay line contains many computers that communicate with each other using
ethernet links. They exchange information using the messaging protocol described in
MRO Delay Line documents “Network Message Protocols and
Telemetry/Status/Commands Log File Format” and “dlmsg Library” (both by John
Young). However, this information exchange cannot be achieved unless connections
between the computers are firstly established in an agreed-upon and orderly fashion.

This document describes how the computers should connect to each other so that
messages can be passed between them as required for a functioning delay line. We
assume that the reader has a basic knowledge of C programming and the concept of
interprocess communication using unix ports and sockets.

 2 Definitions
For clarity we define the following:

● Source: A computer program that generates delay line messages.

● Sink: A computer program that receives delay line messages.

● Command, command status, status, telemetry: All are message types as set out
in the Network Message Protocols document.

● Controller: A computer program that sends commands (a “command source”).
Normally the workstation is the only controller, but if there is a test program
running on another computer that sends commands then it is also a controller.

● Controllee: A computer program that accepts commands (a “command sink”).
Controllers and controllees need not be running on separate computers.

● Port1, port2: Unix ethernet port numbers. Port1≠port2. Port1 is used for
status, telemetry and command messages. Port2 is used for command data
messages. The values have not yet been defined but the current de-facto
standard is to use ports 5000 and 5001.

● SocketA, SocketB,...,socketF: Unix sockets, which should be created using
David Buscher's socketlib library (distributed with the serialise library
described in “Serialise Network Message Protocol” by David Buscher).

● ProgamA, programB: Two programs that communicate with each other via a
socket connection.

 3 The Connection Protocol
There are actually two connection protocols. The first is for establishing connections
where commands, status and telemetry information is exchanged and the second is
for command data, which has simpler requirements. In both cases, the protocol is the
same whether the delay line network is being initialised or a connection is being
restored due to a prior fault or a deliberate disconnection.

 3.1 Command, status and telemetry connection protocol

This protocol makes use of the fact that a given controllee only sends telemetry and
status information to one other program (the controller) and only expects commands
to arrive from that same program.

1. Controllers should be initialised (possibly using CreateListenPort() from
socketlib) so that they listen for connection attempts from anywhere on socketA
using port1.

2. Controllees should initiate a connection with a controller by creating socketB
(possibly by using ConnectToServer()) which is intended for transmission of
status and/or telemetry messages to the controller on port1. Controllers do not
initiate such connections1.

3. When the controller notices that a connection is being attempted on port1, it
creates socketC to receive subsequent messages from the controllee on port1
and to send any commands to it (also using port1). As port1 connection
attempts arrive from other sources, further sockets are created as necessary.

4. When the controllee notices that socketC exists (that is, its attempt to create
socketB was successful), it should start to listen for incoming commands from
the controller using socketB.

5. The connection is now established. The controllee can use socketB to send
status and telemetry information to and receive commands from the controller.
The controller can use socketC to send commands to and receive telemetry and
status information from the controllee.

 3.2 Command data connection protocol

For command data, a command data sink can expect command data to arrive from
anywhere, but it does not need to send anything back to the source.

1. Command data sinks should be initialised so that they listen for command data
from anywhere using port2 on socketD.

2. A command data source initiates communication with a command data sink by
creating socketE which is intended for transmission of command data using
port2.

3. The command data sink reacts by creating socketF for reception of subsequent
command data from this source on port2. As messages arrive from other
sources, further sockets are created as necessary.

4. The connection is now established. The command data sink can receive
command data on socketF. The command data source can transmit command
data on socketE.

1 Rationale: Under normal circumstances the controller is an always-online workstation,
while controllees are added to or removed from the network as needs dictate. It is sensible
for controllees to announce their presence to the controller when they appear on the
network – otherwise the workstation would have to periodically poll the network to
discover which controllees were currently available.

 4 The Disconnection Protocol
In the operational delay line, it is an error condition for any program to break an
established socket connection, even when this is deliberate, and it should be reported
as such. Hence a disconnection can be handled in much the same way whether one of
the parties deliberately disconnected or there was a system failure such as a network
problem.

The disconnection protocol is the same for all kinds of source and sink:

1. ProgramA ceases communication with programB by ceasing to write to and/or
read from the corresponding socket. It then destroys the socket itself.

2. ProgramB notices communication with programA has stopped. It might do this
by timing out if it was expecting data from programA, or by noticing that
messages to programA fail to be sent, or by receiving a “hangup” signal from
the socket (this might take several minutes).

3. ProgramB then stops transmitting via the socket in question and destroys that
socket. The disconnection process is now complete.

	 1 Introduction
	 2 Definitions
	 3 The Connection Protocol
	 3.1 Command, status and telemetry connection protocol
	 3.2 Command data connection protocol

	 4 The Disconnection Protocol

