
Cavendish Laboratory
JJ Thomson Avenue

Cambridge CB3 0HE
UK

MRO Delay Line

rev 0.3

19 July 2006

John Young
jsy1001@cam.ac.uk

dlmsg Library

Table of Contents
 1 Introduction..3

 1.1 Portability...3
 1.2 Use of malloc..4

 2 Building and Installing..4
 2.1 Prerequisites..4

 2.1.1 Install build tools...4
 2.1.2 Install GLib..4
 2.1.3 Build and Install Exception and Serialise libraries...........................4

 2.2 Build dlmsg Library and Test Programs..4
 2.3 Run Test Programs...5
 2.4 Install Library...5

 3 Header Files to Include...5
 4 Generic Functions...5
 5 Server/client Architecture..6
 6 Status Messages...7

 6.1 Sending status..7
 6.1.1 Acknowledging commands..8
 6.1.2 Flagging an error..8
 6.1.3 Advanced Use: Sending concatenated status messages...................8

 6.2 Receiving status...9
 6.2.1 Retrieving command acknowledgements..9
 6.2.2 Retrieving error state..10
 6.2.3 Advanced Use: Receiving concatenated status messages..............10

 7 Telemetry Messages...10
 7.1 Sending telemetry..10

 7.1.1 Sending concatenated telemetry messages....................................10
 7.2 Receiving telemetry...10

 7.2.1 Receiving concatenated telemetry messages..................................11
 8 Command Messages...11

 8.1 Sending commands..11
 8.2 Receiving commands..12

 9 Data Messages..13
 9.1 Sending data messages..13
 9.2 Receiving data messages...14

Objective
To provide sufficient information to allow developers working on the MRO Delay
Lines to make use of the dlmsg library.

Scope
This manual outlines how to call functions in the dlmsg library in order to send and
receive status, telemetry, command and command data messages. This document
should be read in conjunction with:

● The protocols document “Network Message Protocols and
Telemetry/Status/Commands Log File Format”.

● The automatically-generated reference documentation for dlmsg. This
documentation is generated by Doxygen from comments embedded within the
source code. Refer to the section Build dlmsg Library and Test Programs for
instructions on generating a copy of the reference documentation.

● The manual for the Serialise library, which describes how to set up socket
connections over the network.

● The manual for the exception-handling library, so you know how to catch
exceptions thrown by the messaging code.

 1 Introduction
The dlmsg library contains code for sending and receiving all four types of message
identified in the protocols document:

● Status messages

● Telemetry messages

● Command messages

● (Command) data messages

Support for concatenated status messages and concatenated telemetry messages (as
defined in the protocols document) is included.

It is intended that all sub-systems of the prototype delay line use dlmsg, in order to
reduce the overall development time and make messaging more reliable. The library
hides details of the message formats from callers, so the formats can
straightforwardly be modified if necessary. When compiled without debugging
symbols, the size of the dlmsg binary is approximately 40 kilobytes, so there should
be no problem using dlmsg on embedded systems.

The library does not provide facilities for buffering messages — a separate software
package will be written for this.

 1.1 Portability

The dlmsg library has been written in ANSI C (C99), and uses only ANSI C standard
library functions, plus GLib 2.x and the Serialise (which requires the sockets library)
and Exception libraries.

Hence it should be straightforward to port the library to various platforms (e.g. QNX,
if necessary). However, the library has only been tested on Linux (Fedora Core 5,
kernel 2.6.15, glibc 2.4, gcc 4.1.0).

 1.2 Use of malloc

The dlmsg library requires GLib. GLib objects and functions are only used internally;
your code need not invoke GLib explicitly.

The dlmsg library is written in an object-oriented style, as outlined in the coding
standards document “Coding and Documentation Guidelines for Prototype Delay Line
Software”.

Both of these design decisions have led to the messaging library making extensive
use of dynamic memory allocation. In particular, the library calls g_malloc() and
g_free() (as well as GLib functions that themselves call g_malloc() and g_free()). By
default g_malloc() calls the system (i.e. C standard library) malloc, but this behaviour
can be changed if necessary — refer to the GLib documentation for more details.

 2 Building and Installing

 2.1 Prerequisites

 2.1.1 Install build tools

You will need gcc and Gnu make to build the library, and Doxygen to generate the
reference documentation.

 2.1.2 Install GLib

The messaging library requires GLib version 2.x (version 1.2 might work if you don't
have 2.x). It has been tested with version 2.10.1.

Packages for GLib are available for most Linux distributions. You will need to install
the “development” package (this is called glib2-devel on Fedora Core).

 2.1.3 Build and Install Exception and Serialise libraries

Login to apcsthatt and retrieve the source for the Exception library from the local
subversion repository (this method avoids the need to install a subversion client on
the build host):

apcsthatt> svn checkout svn://localhost/dl/libs/exception
Copy the contents of the resulting exception subdirectory over to your desired build
host. On this machine, build and install (by default, to subdirectories of /usr/local/)
by typing make, becoming root, then typing make install.

The procedure for building and installing Serialise is identical, except that the
repository URL you should supply to svn checkout is svn://localhost/dl/libs/serialise.

 2.2 Build dlmsg Library and Test Programs

Retrieve the source for dlmsg using subversion, using the repository URL
svn://localhost/dl/libs/dlmsg.

Copy the source to your desired build host, then type make to build the library and
test programs.

Build the reference documentation by typing doxygen Doxyfile. This will generate
HTML-format documentation in a subdirectory html, plus LaTeX source in a
subdirectory latex. The latter can be used to generate documentation in PDF format:
change to the latex subdirectory and type make to generate a file refman.pdf.

 2.3 Run Test Programs

There are four pairs of test programs. Each pair communicate using the loopback
interface, and so should be run on the same computer (use two terminal windows).

● simpleclient and simpleserver: send/receive status messages

● test_sendtele and test_recvtele: send/receive telemetry messages

● test_sendcmd and test_recvcmd: send/receive command messages

● test_senddata and test_recvdata: send/receive command data messages

It should be obvious whether a given pair of programs are communicating
successfully.

 2.4 Install Library

Install the (static) library and C header files under /usr/local/ by becoming root
and typing make install.

 3 Header Files to Include
Code that calls dlmsg functions must #include the appropriate header file(s). These
are as follows:

● status.h: Definitions related to status messages

● telemetry.h: Definitions related to telemetry messages

● cmd.h: Definitions related to command messages

● data.h: Definitions related to (command) data messages

Each of these four header files has a comment at the top of the file listing the
headers to include before including the file itself. For example, status.h begins with:

/**
 * @file status.h
 * Definitions related to status messages.
 *
 * @author John Young
 *
 * Code that includes this file should first include:
 * - <glib.h>
 * - "exception.h"
 * - "serialise.h"
 * - "datatypes.h"
 * - "message.h"
 * - "vclient.h"
 * - "ack.h"
 */

Note that an alternative approach would have been for each of the top-level header
files to contain the appropriate #include statements.

 4 Generic Functions
The functions whose prototypes are in message.h are applicable to all types of
message. The most useful one is probably get_msg_type(), which returns an enum
giving the message type — this is intended for use by a program that receives several
types of messages from the same socket (such as the telemetry/status server
described below). The deserialiser passed to get_msg_type() is reset back to the start

of the message on exit, so it can then be passed to a message-type-specific decoding
function.

The other generic functions are really only useful within dlmsg:

● get_message_type_noreset(): as get_msg_type() but doesn't reset deserialiser

● skip_tuple(): skip arbitrary tuple in serialised message

● array_typecode(): return serialise typecode for an array with the specified
SerialType

 5 Server/client Architecture
The telemetry and status protocols defined in the protcols document are based on the
concept of a server (the delay line Workstation) that listens on a pre-arranged TCP port,
to which clients (e.g. trolley micros, VME system) connect. Telemetry and status
messages received from each client are handled by the server, until the client breaks
the connection.

The messaging library allows for the possibility that a single computer may act as
several “virtual clients”, each sending a distinct set of telemetry and/or status. A
program that sends telemetry and/or status (and isn't just forwarding messages
verbatim) must create an object to store the state of each virtual client that it
implements:

 VClient *pVClient;
 ExcStatus *status;

 /* Initialise error system */
 status = ExcNew();

 /* Initialise sender state */
 pVClient = CreateVClient("VME", status);

The pointer to the resulting VClient should be passed to the telemetry/status object
constructors CreateTele() and CreateStat(). When it has finished sending messages,
the sending program can free the storage associated with the VClient instance by
calling the appropriate destructor:

 DestroyVClient(pVClient, status);

Use of the VClient “object” ensures that:

● All messages from the same virtual client contain the same client identifier
string and consistent configIds

● The configId is incremented automatically whenever the set of telemetry
streams/status items has changed (detected by noting calls to CreateStat() and
CreateTele()1) since the previous message was sent

Note that the messaging protocol and VClient implementation allow each virtual
client to divide its telemetry streams/status items amongst more than one sequence
of telemetry/status messages. Each message can be concatenated or unconcatenated.
For example, a client could send two telemetry messages every 0.1s, one containing
streams sampled at 5kHz, and one containing streams sampled at 10Hz.

However, a more complex server implementation is required to cope with virtual

1This change detection mechanism will be fooled by clients that create all of their
status/telemetry objects during initialisation, then later switch between transmitting
different subsets of them. If your client does this, it should call
VClientSetConfiguring() before each switch.

clients that send several sequences. To facililitate such an implementation, the
messaging library provides functions to efficiently identify which sequence a message
belongs to: get_XXX _seq_key() and get_XXX _seq_hash().

 6 Status Messages
These are the most complicated messages, as they can include both boolean and
numerical values (with associated labels), as well as command acknowledgements
and an error message and error flag.

However, all delay-line sub-systems will need to send status messages to the
Workstation, so we might as well treat status messages first!

The same “class”, StatUnit, is employed for both sending and receiving messages. A
StatUnit instance represents the content of an unconcatenated status message (a list
of command acknowledgements, error flag and message, plus a set of boolean and
numeric status items with a common timestamp).

 6.1 Sending status

After reading this section, please examine the test program source code in
simpleclient.c, which combines the function calls outlined here in a complete
program. Some simple error checking is also included.

Create a StatUnit instance (status object) to store the current status of the sub-
system, using CreateStat(). The following example code creates a status object with
two boolean status items and two numerical status items. Labels are associated with
the status items, but their values are not initialised.

 #include <glib.h>
 #include "exception.h"
 #include "serialise.h"
 #include "datatypes.h"
 #include "message.h"
 #include "vclient.h"
 #include "ack.h"
 #include "status.h"

 VClient *pVClient;
 StatUnit *myStat;
 ExcStatus *status;
 char *boolLabel[] = {"SteeringOn", "Tracking"};
 char *numLabel[] = {"Jitter1", "Error1"};
 char *numUnits[] = {"nm", "nm"};

 /* Initialise error system */
 status = ExcNew();

 /* Initialise sender state */
 pVClient = CreateVClient("myClient", status);

 /* Create status object */
 myStat = CreateStat(pVClient, sizeof(boolLabel)/sizeof(char *), boolLabel,

 sizeof(numLabel)/sizeof(char *), numLabel, numUnits,
 status);

Note that code examples in later sections will omit the necessary #include
statements, for the sake of brevity.

The sub-system should open a socket connection to the Workstation. Please refer to
the Serialise manual for more details.

 socket = ConnectToServer("apcsthatt", port, status);

The boolean status values stored in the StatUnit instance would normally be updated
whenever the sub-system status changes, by calling StatSetBool():

 StatSetBool(myStat, "SteeringOn", TRUE, status);

The numerical status values can be updated just prior to transmission, by calling
StatSetNum(). The timestamp for the status values should also be set immediately
before transmission:

 #include <sys/time.h>
...
 struct timeval tv;
 struct timezone tz;
...
 StatSetNum(myStat, "Error1", val, status);
 gettimeofday(&tv, &tz);
 StatSetUtc(myStat, (tv.tv_sec + 1e-6*tv.tv_usec), status);

Send a status message by calling StatSendMsg():

 StatSendMsg(myStat, socket, status);

When the sub-system has finished sending messages, it should close the socket
connection. The storage associated with the StatUnit instance can be freed by calling
DestroyStat():

 #include <unistd.h>
...
 close(socket);
 DestroyStat(myStat, status);

 6.1.1 Acknowledging commands

To add a new command acknowledgement to the status object (you should do this
whenever a command is parsed), call StatAckFromArgs():

 char *cmdSource;
 Int32 cmdTag;
 Bool parseFlags[3];
...
 StatAckFromArgs(myStat, cmdSource, cmdTag, parseFlags, status);

The list of acknowledgements is automatically transmitted each time StatSendMsg() is
called. After sending the message, you should clear the acknowledgement list with:

 StatClearAck(myStat, status);

 6.1.2 Flagging an error

To flag an error which has occurred within the sub-system, call StatSetError() to set
the error severity (refer to the protocols document), and StatSetErrorMsg() to set the
associated error message. The error report will then get included in the next status
transmission.

The sub-system should only report the error once, so call StatClearError() after
transmitting the message.

 6.1.3 Advanced Use: Sending concatenated status messages

Only send concatenated messages if you need separate timestamps for different
status items. For each subset with a common timestamp, create a StatUnit instance
using CreateStat(). To send a concatenated message, pass pointers to all of the

StatUnit instances to stat_send_concat() (which takes a variable number of
arguments):

 int socket, nStat;
 ExcStatus *status;
 StatUnit *pStat1, *pStat2, ...;
...
 stat_send_concat(socket, status, nStat, pStat1, pStat2, ...);

An alternative interface is provided for clients that don't know at compile-time how
many status units they will be concatenating:

 StatUnit *ppStat[];
...
 stat_send_concat_alt(socket, ppStat, nStat, status);

In the last example, ppStat is an array of pointers to the StatUnit instances.

 6.2 Receiving status

After reading this section, please examine the test program source code in
simpleserver.c, which combines the function calls outlined here in a complete
program. Some simple error checking is also included.

Receiving status is dealt with in less detail, since only the Workstation needs to do it.
The status items sent by a particular client are not known until a message is
received, so a StatUnit instance is created from the content of the first status
message. Once a socket connection has been established, the message is read into a
Deserialiser using ReadMessage() (refer to the Serialise manual). A pointer to the
deserialiser is passed to StatFromMsg() to create the status object:

 StatUnit *pStat;
 Deserialiser *message;
 ExcStatus *status;
 int socket;
...
 message = ReadMessage(socket, status);
 pStat = StatFromMsg(message, status);

Status values can now be retrieved using StatGetBool() and StatGetNum(). The status
items present can be queried using StatBoolLabels() and StatNumLabels().

Subsequent status messages in the same sequence (you can check whether they are
using get_statmsg_seq_key() or get_statmsg_seq_hash()) should contain an unchanged
set of status items. The UpdateStat() method is used to update the values in a status
object from a serialised message — it will throw an exception if the set of status
items has changed since the call to StatFromMsg().

Destroy the deserialiser and status object when you are finished with them:

 DestroyDeserialiser(message, status);
 close(socket);
 DestroyStat(message, status);

 6.2.1 Retrieving command acknowledgements

Once a message has been decoded using StatFromMsg() or UpdateStat(), you can
check whether it contained the acknowledgement to a particular command by
passing the command tag to StatGetAck(). If there is a matching acknowledgement,
this will return a pointer to an Ack instance. Use the AckGetXXX () macros to access
the various components of the acknowledgement.

 6.2.2 Retrieving error state

Once a message has been decoded, call StatGetError() to access the error flag, and
StatGetErrorMsg() to access the corresponding message.

 6.2.3 Advanced Use: Receiving concatenated status messages

Use stat_from_concat() to create a set of StatUnit's from a serialised message. Use
stat_update_concat() these from subsequent messages in the same sequence. Note
that these functions also work with unconcatenated messages.

 7 Telemetry Messages
The code to send and receive telemetry messages has a very similar structure to that
for status messages. However, not all StatUnit methods have telemetry equivalents,
as telemetry messages have fewer distinct components.

A single “class”, TeleStream, is employed for both sending and receiving messages. A
TeleStream instance represents the content of an unconcatenated telemetry message,
i.e. the properties of the telemetry stream (name, sample rate, chunk length etc.),
plus a single chunk (typically 0.1–1 second's worth) of telemetry data.

 7.1 Sending telemetry

After reading this section, please examine the test program source code in
test_sendtele.c, which combines the function calls outlined here in a complete
program.

Initialise the telemetry stream using CreateTele():

 VClient *pVClient;
 TeleStream *myStream;
 ExcStatus *status;
...
 myStream = CreateTele(pVClient, 1, 0, "testStream",

SAMPLES_PER_SEC, SAMPLES_PER_CHUNK,
SER_FLOAT32, "nm", status);

Send each chunk of telemetry by calling SendTele(), which takes the chunk value
array and timestamp as arguments:

 int socket;
 Float32 *chunk;
 Float64 utc;
...
 TeleSendMsg(myStream, socket, chunk, utc, status);

 7.1.1 Sending concatenated telemetry messages

This is a more efficient way of transmitting multiple streams (the Workstation will
receive fewer messages and hence fewer interrupts).

Create a TeleStream instance for each stream using CreateTele(). To transmit a
concatenated message, first assign the next chunk of data to each object using
TeleSetChunk(), then pass all of the objects to tele_send_concat().
tele_send_concat_alt() provides an alternate interface, analogous to that of
stat_send_concat_alt().

 7.2 Receiving telemetry

After reading this section, please examine the test program source code in

test_recvtele.c, which combines the function calls outlined here in a complete
program.

A TeleStream instance is created from the content of the first telemetry message.
Once a socket connection has been established, the message is read into a
Deserialiser using ReadMessage(). A pointer to the deserialiser is passed to
TeleFromMsg() to create the telemetry object:

 TeleStream *pStream;
 Deserialiser *message;
 ExcStatus *status;
...
 message = ReadMessage(socket, status);
 pStream = TeleFromMsg(message, status);

The first data chunk can now be accessed using TeleGetChunk():

 Float64 utc;
 void *chunk;
...
 chunk = TeleGetChunk(pStream, &utc, status);

Subsequent messages in the same sequence (you can check this using
get_telemsg_seq_key() or get_telemsg_seq_hash()) are decoded using TeleRecvMsg(),
which for convenience returns the new data chunk and timestamp (calling
TeleGetChunk() afterwards also works):

 message = ReadMessage(socket, status);
 chunk = TeleRecvMsg(pStream, message, &utc, status);

The library keeps track of the position in the stream — this can be queried with
TeleGetSampleIndex(). If the received messages do not make up a contiguous data
stream, an exception is thrown.

Note that the receiving code should not assume the data type of a stream. The data
type can be queried using TeleGetType() once the first message has been decoded.
Other stream properties can be queried using the TeleGetXXX () macros. These
properties (sampling rate, chunk length etc.) should not change once the stream has
been started.

 7.2.1 Receiving concatenated telemetry messages

Use tele_from_concat() to create a set of TeleStream's from a serialised message. Use
tele_update_concat() to update the objects from subsequent messages. After decoding
a message, use TeleGetChunk() to retrieve the new data from each TeleStream
instance in the array.

Note that these functions also work with unconcatenated messages.

 8 Command Messages
The Cmd “class” is employed for sending and receiving command messages. Both
Cmd and Data (for command data messages) inherit from an abstract parent “class”
CmdData (because the message formats are identical).

 8.1 Sending commands

After reading this section, please examine the test program source code in
test_sendcmd.c, which combines the function calls outlined here in a complete
program.

Create a Cmd instance with CreateCmd(), then initialise its immutable attributes
(those that don't change from one transmitted message to the next) by calling
InitCmd(). In the case of commands, the only immutable attribute is the name of
system sending the commands — contrast this with the data messages described
below.

 Cmd *pCmd;
...
 pCmd = CreateCmd(status);
 InitCmd(pCmd, "mySys", status);

Two alternative methods for sending commands using the initialised Cmd instance
are provided. SendCmd() is passed an array of command parameters:

 Int16 paramVal[] = {1, 11, 21};
...
 SendCmd(pCmd, socket, "DoNothing", SER_INT16, 3, paramVal, status);

SendCmdAlt() is passed the parameter values at the end of the argument list:

 SendCmdAlt(pCmd, socket, "DoNothing", SER_INT16, 3, status, 1, 11, 21);

To send a command that takes no parameters, pass SER_NONE for the parameter
type, zero for the number of parameters, and (if applicable) NULL for the parameter
array:

 SendCmdAlt(pCmd, socket, "NoParam", SER_NONE, 0, status);
 SendCmd(pCmd, socket, "NoParam", SER_NONE, 0, NULL, status);

Use the same Cmd instance for sending commands to all destinations. This has the
advantage that each command will have a unique tag.

The storage used by the Cmd instance is freed by calling DestroyCmd().

 8.2 Receiving commands

After reading this section, please examine the test program source code in
test_recvcmd.c, which combines the function calls outlined here in a complete
program.

To receive commands, first create a Cmd instance using CreateCmd(). Serialised
command messages are then decoded by passing this to RecvCmd(). The command
string can then be accessed with CmdGetCmd() and the associated parameters with
CmdGetParam() or CmdGetParamVal():

 Deserialiser *message;
 int socket;
 ExcStatus *status;

 Cmd *pCmd;
 SerialType paramType;
 int len;
 char *cmd;
...
 pCmd = CreateCmd(status);
...
 message = ReadMessage(socket, status);
 RecvCmd(pCmd, message, status);

 /* Display contents */
 printf("Received command from %s:\n", CmdGetSourceId(pCmd, status));
 printf(" Tag: %d\n", CmdGetTag(pCmd, status));
 cmd = CmdGetCmd(pCmd, status);

 printf(" Cmd: %s\n", cmd);
 if(strcmp(cmd, "DoNothing") == 0)
 {
 /* Verify type/length of parameter array */
 (void) CmdGetParam(pCmd, ¶mType, &len, status);
 assert(paramType == SER_INT16);
 assert(len == 3);
 /* Print parameters */
 /* Note: could use return from CmdGetParam instead of CmdGetParamVal */
 printf(" Param: %d %d %d\n",

 CmdGetParamVal(pCmd, 0, Int16, status),
 CmdGetParamVal(pCmd, 1, Int16, status),
 CmdGetParamVal(pCmd, 2, Int16, status));

 }

The CmdGetParamVal() macro must be passed the C data type of the parameters, so
be careful to use the appropriate type, based on the decoded command string.

Note that the first call to RecvCmd() sets the immutable attributes of the command
object. Hence if you try to use the same object to decode commands from different
sources, an exception will be thrown. This will not be an issue in practice, as all
commands are sent by the Workstation.

 9 Data Messages
The Data “class” is employed for sending and receiving command data (henceforth
just “data”) messages. Both Data and Cmd (see above) inherit from an abstract
parent “class” CmdData.

 9.1 Sending data messages

After reading this section, please examine the test program source code in
test_senddata.c, which combines the function calls outlined here in a complete
program.

Create a Data instance for each data “stream” (messages with the same data label
and destination) using CreateData(). Initialise the immutable attributes (those that
don't change from one transmitted message to the next) of each object by calling
InitData():

 Data *pData;
 SerialType dataType = SER_INT32;
 int dataLen = 3;
...
 pData = CreateData(status);
 InitData(pData, "mySys", label, dataType, dataLen, status);

Two alternative methods for sending data messages using the initialised Data
instance are provided. SendData() is passed an array of data:

 Int32 dataVal[] = {1, 11, 21};
...
 SendData(pCmd, socket, dataVal, status);

SendDataAlt() is passed the parameter values at the end of the argument list:

 SendDataAlt(pCmd, socket, status, 1, 11, 21);

The storage used by the Data instance is freed by calling DestroyData().

 9.2 Receiving data messages

After reading this section, please examine the test program source code in
test_recvdata.c, which combines the function calls outlined here in a complete
program.

To receive data messages for a particular “stream”, first create a Data instance using
CreateData(). Serialised messages are then decoded by passing this to RecvData().
The command string can then be accessed with CmdGetCmd() and the associated
parameters with CmdGetParam() or CmdGetParamVal():

 Deserialiser *message;
 int socket;
 ExcStatus *status;

 Data *pData;
 SerialType dataType;
 int len;
 void *data;
 Int32 *dataInt32;
 char *label;
...
 pData = CreateData(status);
...
 message = ReadMessage(socket, status);
 RecvData(pData, message, status);

 /* Display contents */
 printf("Received data from %s:\n", DataGetSourceId(pData, status));
 printf(" Tag: %d\n", DataGetTag(pData, status));
 label = DataGetLabel(pData, status);
 data = DataGetData(pData, &dataType, &len, status);
 printf(" Label: %s\n", label);
 if(strcmp(label, "DoNothing") == 0)
 {
 assert(dataType == SER_INT32);
 assert(len == 3);
 /* Note: could use DataGetVal() instead of following code */
 dataInt32 = (Int32 *) data;
 printf(" Data: %d %d %d\n",

 dataInt32[0], dataInt32[1], dataInt32[2]);

DataGetVal() must be passed the correct C data type, so be careful to use the
appropriate type, based on the decoded label.

Note that the first call to RecvData() sets the immutable attributes of the data object.
Hence if you try to use the same object to decode messages with e.g. different labels,
an exception will be thrown.

	 1 Introduction
	 1.1 Portability
	 1.2 Use of malloc

	 2 Building and Installing
	 2.1 Prerequisites
	 2.1.1 Install build tools
	 2.1.2 Install GLib
	 2.1.3 Build and Install Exception and Serialise libraries

	 2.2 Build dlmsg Library and Test Programs
	 2.3 Run Test Programs
	 2.4 Install Library

	 3 Header Files to Include
	 4 Generic Functions
	 5 Server/client Architecture
	 6 Status Messages
	 6.1 Sending status
	 6.1.1 Acknowledging commands
	 6.1.2 Flagging an error
	 6.1.3 Advanced Use: Sending concatenated status messages

	 6.2 Receiving status
	 6.2.1 Retrieving command acknowledgements
	 6.2.2 Retrieving error state
	 6.2.3 Advanced Use: Receiving concatenated status messages

	 7 Telemetry Messages
	 7.1 Sending telemetry
	 7.1.1 Sending concatenated telemetry messages

	 7.2 Receiving telemetry
	 7.2.1 Receiving concatenated telemetry messages

	 8 Command Messages
	 8.1 Sending commands
	 8.2 Receiving commands

	 9 Data Messages
	 9.1 Sending data messages
	 9.2 Receiving data messages

