
MRO Delay Line

Control Software Architecture

The Cambridge Delay Line Team

rev 0.1
4 July 2007

Cavendish Laboratory
Madingley Road

Cambridge CB3 0HE
UK

Change Record

Revision Date Authors Changes
0.1 2007-07-04 JSY Initial version

Objective

To describe the overall architecture of the control software for the prototype MROI delay
line.

Scope of this document

This document provides a high-level description of the control software for the prototype
delay line. We describe the sub-systems which comprise the distributed control system
and their roles within the system. The protocols used for inter-subsystem communica-
tion over Ethernet (encompassing both control of the delay line and routing of diagnostic
telemetry to a central server) are described in detail. We also describe a FITS-based file
format for logging of sub-system commands, status, and telemetry.

More detailed functional descriptions of the software for individual sub-systems may be
found in the following documents:

• Workstation Software Functional Description

• VME Software Functional Description

• Trolley Software Functional Description

• Shear Camera Software Functional Description

1 Introduction

The prototype control system is a distributed, event-driven system, comprising software
running on the following computers:

• A “workstation” PC (shared between all trolleys) to act as a supervisor, and provide
a user interface for testing the delay line and interrogating delay line telemetry.

• A VME-bus CPU (shared between all trolleys) to read the metrology signal and
hence control the Cat’s-eye.

1

• A low-power PC104 single-board micro on each trolley, to control onboard functions
with undemanding timing requirements, and to send telemetry to the Workstation.

• A rack-mounted PC connected to each shear camera, to capture camera frames and
compute shear corrections which are applied to the Cat’s-eye secondary tip-tilt stage.

The actions of these computers are coordinated by means of a custom network messaging
protocol. This protocol defines several categories of message.

1. Commands:
Sent by the Workstation to sub-systems in response to user input

2. (Command) Data:
Information needed in real-time to close the servo loops described in Sec. 2

3. Status (transmitted from sub-system to the Workstation):

• Subsystem state information

• Delay line performance metrics

• Information to display for the user

• Command acknowledgements

4. Telemetry:
Diagnostic information transmitted from sub-systems to the Workstation

1.1 Platforms

The VME system is an Intel?? processor VME-bus system running the QNX operating
system (see “Metrology System and VME Hardware Design Description”). The other de-
lay line control computers all run the GNU/Linux operating system (Linux kernel ver-
sion 2.6.11 or 2.6.20). The trolley micro is a PC104-bus system with an ARM-compatible
processor (see “Trolley Electronics Design Description”), the other Linux systems having
standard Intel x86 architectures.

The prototype delay line code is written in ANSI C (C99), except for the code for visualisa-
tion/analysis of recorded telemetry, which is written in Matlab script (version 7). Where
appropriate (e.g. for much of the Workstation code and some libraries), we have written
object-oriented code in C (in some cases making use of the GLib Object System).

2 Overview of Control Loops

We now outline the servo loops involved in the operation of the trolley, and describe the
roles played by the Workstation, VME, trolley, and shear camera software in closing these

2

V
M

E
M

E
T

R
O

LO
G

Y

LA
S

E
R

T
IP

/T
IL

T
A

C
T

U
A

T
O

R

P
IE

Z
O

W
O

R
K

S
T

A
T

IO
N

R
F

 L
IN

K
E

T
H

E
R

N
E

T

F
O

C
U

S

LI
N

K
LA

T
E

N
C

Y
R

F
 L

O
W

T
IL

T
S

E
N

S
O

R
C

O
N

T
R

O
L

(R
O

LL
)

S
T

E
E

R
IN

G

C
A

T
S

E
Y

E R
E

L.
 P

O
S

’N

S
E

N
S

O
R

S
LE

W

P
O

S
IT

IO
N

S
/

V
E

LO
C

IT
IE

S

V
E

LO
C

IT
Y

E
R

R
O

R

D
IR

E
C

T
IO

N

T
R

O
LL

E
Y

M
IC

R
O

T
R

A
C

K

+

+

S
E

N
S

O
R

T
E

M
P

S
P

E
E

D
LI

M
IT

E
R

T
R

O
LL

E
Y

D
R

IV
E

LI
M

IT
S

W
IT

C
H

S
H

E
A

R
 S

E
N

S
O

R

R
C

B
 0

6−
01

−
06

C
P

U

P
ot

en
tia

l i
nt

er
fa

ce
 to

 IC
S

Fi
gu

re
1:

O
ve

rv
ie

w
of

th
e

co
nt

ro
ls

ys
te

m
fo

r
th

e
pr

ot
ot

yp
e

tr
ol

le
y,

sh
ow

in
g

th
e

or
ig

in
of

th
e

si
gn

al
s

us
ed

to
co

nt
ro

l
th

e
ac

ti
ve

el
em

en
ts

on
th

e
tr

ol
le

y.
C

om
po

ne
nt

s
in

th
e

lo
w

er
ha

lf
of

th
e

di
ag

ra
m

(e
xc

ep
tp

ar
to

ft
he

sp
ee

d
lim

it
sw

it
ch

)
ar

e
ph

ys
ic

al
ly

lo
ca

te
d

on
th

e
tr

ol
le

y.
Ea

ch
do

tt
ed

lin
e

is
dr

aw
n

be
tw

ee
n

an
ac

ti
ve

el
em

en
ta

nd
a

se
ns

or
w

ho
se

ou
tp

ut
is

in
di

re
ct

ly
af

fe
ct

ed
by

ac
tu

at
in

g
th

e
el

em
en

t.
D

as
he

d
lin

es
in

di
ca

te
co

nn
ec

ti
on

s
m

ad
e

in
so

ft
w

ar
e

ru
nn

in
g

on
th

e
on

bo
ar

d
tr

ol
le

y
m

ic
ro

.
Th

e
“r

el
.

po
s’

n
se

ns
or

”
m

ea
su

re
s

th
e

re
la

ti
ve

po
si

ti
on

of
th

e
C

at
’s

-e
ye

w
it

h
re

sp
ec

t
to

th
e

ca
rr

ia
ge

.

3

loops. Cross-references are provided to the more detailed descriptions in other docu-
ments.

The servo loops are shown conceptually in Figure 1, which includes both the loops en-
tirely contained on the trolley and those relying on signals from external components,
transmitted to the trolley via the RF data links.

2.1 Focus Control

This loop is only activated occasionally to perform axial translation of the Cat’s-eye sec-
ondary mirror, in order to compensate thermally-induced changes in the length of the
Cat’s-eye tube. The loop is closed around an encoder mounted on the secondary stage
under control of the trolley micro.

2.2 Steering

This is really a misnomer. The trolley is not being steered as it can only move axially along
the pipe, so this is really roll control.

Mostly this is achieved by having the trolley centre of gravity below the centre line. This
is a robust control – it is then almost impossible to capsize a trolley – but it is not very
accurate, and accuracy is needed for two reasons. Firstly the axes of the secondary tip/tilt
stage have to be kept matched to the beam shear sensor, and secondly the trolley wheels
have to follow relatively narrow tracks to cross the pipe joints where the surfaces are
aligned.

For accurate roll control an active trim system is included on the trolley. An electronic tilt
sensor measures the roll angle of the trolley. This is digitised and read by the onboard
micro, which controls a servo motor to adjust the tracking of the un-powered rear wheel
to correct any error. This loop also needs an input from the drive motor controller as the
sense of the correction required depends on the direction of travel. This low frequency
loop is entirely contained on the trolley, and is described in the document “Trolley Elec-
tronics Design Description”.

2.3 Shear Control (Secondary Tip/tilt)

This is an “always-on” low frequency loop closed via the Ethenet RF link and onboard
micro. The shear sensor in the BCA uses a small fraction of the metrology laser light
to measure any shear, and sends correction signals to the tip/tilt stage in the secondary
mount on the Cat’s-eye. This loop is described in the document “Shear Camera Software
Functional Description”.

4

2.4 Optical Path Delay (Cat’s-eye and Carriage Control)

There are two main modes of operation for these loops. In either case the position of the
Cat’s-eye is measured by the laser metrology system, and the relative position of the Cat’s-
eye and the carriage is measured by an onboard sensor. However, the measurements are
used in somewhat different ways in the two modes.

The OPD loop is described in more detail in XXX.

2.4.1 Tracking

This is the most critical mode, used when recording science data, and involves two stages
to the servo loop:-

Cat’s-eye The Cat’s-eye position is measured by the laser metrology system and com-
pared (by the VME CPU) with the current demanded position (interpolated from posi-
tions sent slightly in advance from the Workstation – see Sec. B.1.1). The resulting error
signal is sent via the dedicated low latency RF link to the trolley (bypassing the onboard
micro), where it is amplified and used directly to drive the Cat’s-eye voice coil actuator.

Two small additional signals derived from the Cat’s-eye/carriage relative position sensor
are also applied, in hardware (we call this “trolley management”). The first one is a pro-
portional term used to reduce the effective stiffness of the “wishbone” leg flexure pivots.
The second is a velocity term to offset dynamic drag caused by the voice coil. In addition
electronic travel limits for the Cat’s-eye are set by the relative position sensor; these clamp
the voice coil drive signal if the limits are exceeded.

Carriage The carriage drive motor is directly controlled by the relative position sensor
to keep the carriage centred under the Cat’s-eye so the “wishbone” legs are upright. This
is important for best noise rejection. A demanded velocity term sent via the Ethernet RF
link (Sec B.1.5) is added to reduce tracking error.

2.4.2 Slewing

This mode is used for rapid re-positioning of the trolley. The Cat’s-eye voice coil is driven
directly by the relative position sensor to hold it fixed relative to the carriage. The drive
motor can then be ramped up to full speed until the desired position is approached and
then slowed before reverting to tracking mode. This is accomplished by the VME CPU
reading the laser metrology and sending velocities to the trolley micro (Sec B.1.5).

5

3 Control System Information Flow

The flow of information between the components of the control system is shown in Fig-
ure 2. Many of the signals are transmitted as messages over Ethernet; we categorise these
messages as follows:

1. Commands

2. (Command) Data:
information needed in real-time to close servo loops

3. Status (includes command acknowledgements)

4. Telemetry

The messaging protocol described in the following sections is summarised in Table 1.

3.1 Design Aims

The messaging protocol was designed with the following aims in mind:

• Provide the capability to record all control signals (hardware and software), for de-
bugging the prototype delay line

• Facilitate possible re-use of the architecture and/or code by MRO, both for fault
diagnosis over the lifetime of the interferometer and for observing

• Use well-defined message protocols, and document these thoroughly

• Provide a flexible messaging system, that allows e.g. adding/changing signals with
minimal knock-on effects

3.2 Connection Protocol

The protocol for establishing communication between the various computers in described
in Sec. A. In brief, the Workstation acts as a server, listening for connection attempts on a
pre-arranged TCP/IP port. Each sub-system connects to the server, establishing its own
socket connection which it subsequently uses to transmit status and telemetry to the Work-
station. The Workstation uses the same connection to send commands in the opposite
direction. A separate socket connection is made for each command data stream (Sec. B.1).

6

Shear
offsets

Archived Telemetry
& Status

Pos’ns & velocities

Display

WORK
STATION

(Linux)

ICS

NTP

Shear
Sensor 1
(Linux)

Trolley 1
Micro

(Linux)

VME
System

(RT Linux)

GPS

Fringe
Tracker

Metrology
System

KEY: Commands, Telemetry
& Status

Command Data Signals

Velocity

Disk

Shear
Sensor 2
(Linux)

Shear
Sensor N
(Linux)

Trolley 2
Micro

(Linux)

Trolley N
Micro

(Linux)

Offsets

Low latency
rate corrections

Undefined

DL Control System
External components

Figure 2: Information flow in the control system for the prototype delay line. Dashed
lines (labelled “undefined”) indicate where interfaces to MROI components external to
the delay lines are envisaged, if the same architecture were to be used for operations. In
this diagram, “signals” are control signals transmitted via interfaces other than Ethernet.
These signals are not described any further in this document.

7

Ta
bl

e
1:

Su
m

m
ar

y
of

de
la

y
lin

e
m

es
sa

gi
ng

pr
ot

oc
ol

s.
Th

e
ta

bl
e

us
es

th
e

st
an

da
rd

id
en

ti
fie

rs
fo

r
de

la
y

lin
e

su
b-

sy
st

em
s

lis
te

d
in

Ta
bl

e
4.

N
ot

e
th

at
co

pi
es

of
co

m
m

an
d

da
ta

ar
e

tr
an

sm
it

te
d

to
th

e
W

or
ks

ta
ti

on
by

th
e

or
ig

in
at

in
g

su
b-

sy
st

em
,

as
te

le
m

et
ry

,i
n

or
de

r
to

lo
g

th
e

da
ta

.C
om

m
an

ds
ar

e
lo

gg
ed

di
re

ct
ly

by
th

e
W

or
ks

ta
ti

on
.

M
sg

.t
yp

e
So

ur
ce

D
es

ti
na

ti
on

M
sg

.R
at

e
/H

z
U

se
of

co
nt

en
t

St
at

us
TR

LY
n

,V
M

E,
SH

EA
R

n
W

K
ST

N
10

–3
0

Sy
st

em
-l

ev
el

co
nt

ro
l,

di
sp

la
ye

d,
lo

gg
ed

Te
le

m
et

ry
A

ll
W

K
ST

N
1

Lo
gg

ed
C

om
m

an
d

W
K

ST
N

V
M

E,
SH

EA
R

n
,T

R
LY

n
A

sy
nc

.
O

be
y

co
m

m
an

d
C

om
m

an
d

D
at

a
W

K
ST

N
,V

M
E,

SH
EA

R
n

,F
T

V
M

E,
SH

EA
R

n
,T

R
LY

n
10

-2
00

C
lo

se
lo

op

8

3.3 Commands & Command Data

We have distinguished between commands and command data (henceforth we will refer
to command data as “data” where this is unambiguous): the former are sent from the
Workstation to the delay line sub-systems, usually asynchronously. The latter (e.g. shear
offsets) are used to close servo loops in the system (see Sec. 2). Typically command data
are transmitted at a fixed rate from one specific sub-system to another. The relevant servo
loop is activated or deactivated in response to commands from the Workstation to the
sub-system receiving the data; typically the data is always sent whether the system state
requires it or not.

As described below, command acknowledgements are incorporated into the status mes-
sages transmitted to the Workstation. There are no explicit acknowledgements for data
messages.

Commands and their corresponding acknowledgements are logged in the same file as
telemetry and status information (defined in the next section) — see Sec. D. Command
data are logged by sending a copy of the data from the originating sub-system to the
Workstation as telemetry.

We give more details on the protocols for transmitting commands and data in Sec. B.

3.4 Telemetry & Status

We define telemetry to consist of “measurements” made primarily for diagnosing prob-
lems with the delay lines. We treat measurements from all physical sensors in the delay
line system as potential telemetry data. Telemetry can also include values of variables
within the delay line control software.

Detailed lists of the telemetry items implemented thus far are given in Sec. C.1. Teleme-
try is digitised and buffered locally before being transmitted (in “chunks” at typically
one-second intervals) over the Ethernet to the Workstation, where it is buffered prior to
optional archiving, processing and display.

We define “status” to consist of information used by the control system and by the user in
controlling the delay lines. By this definition status includes:

• Information (mostly boolean) about the state of a sub-system, which typically changes
in response to commands.

• Command acknowledgments, to provide near-immediate feedback on whether each
command was accepted.

• Information about whether the delay line is performing acceptably (e.g. OPD jitter)

• Information that should be displayed in real time (e.g. trolley position)

9

Status messages are sent at regular intervals (every ∼0.1 s). The message format allows
these to contain arbitrary boolean and numerical status items.

Special components of each status message indicate whether any commands have been
received since the previous status message was issued, and for each such command,
whether the command and any associated parameters are valid, and whether the com-
mand will be acted on. In this way the status message incorporates command acknowl-
edgement(s). Any subsequent changes of state in response to a command will be indicated
by (regular) status messages, i.e. changes in the status items listed in Sec. C.1.

The essential distinction between telemetry and status, as defined here, is that the former
is only employed (in near-real-time or after the fact) by the user to debug the system,
whereas status information is used by the control system and interactively by the user
in controlling the delay line (and may also be used for debugging purposes). This is
the reason for requiring status information to be sent more frequently compared with
telemetry chunks.

However, status information is logged to the same file as telemetry (see Sec. D), so that
the user can correlate the information when debugging the delay line.

In the prototype control system architecture, status and telemetry messages are only sent
to the Workstation (see Figure 2). The Workstation contains all of the system-level intelli-
gence necessary to control the delay line.

3.5 Message Formats

Inter-subsystem messages are encoded using the locally-written “Serialise” library , and
transmitted using sockets over TCP/IP. The Serialise library (described in its manual “Se-
rialise Network Message Format”) implements a compact yet flexible binary representa-
tion. Serialise implements messages that are automatically self-describing in the sense
that the receiving software can deduce the contained data types/lengths and their or-
der/grouping from just the message itself.

The message formats defined in the appendix add another layer of self-description which
labels each data item and, for telemetry and status, provides meta-data such as the units
and timing of each measurement.

A C library, “dlmsg”, has been written to facilitate composing, transmitting, receiving and
decoding delay line network messages (see manual “dlmsg Library”), and is used by all
of the prototype delay line control software components.

A Socket Initialisation Protocol

The text in this section was taken from the document “Socket Initialisation Protocol for
Delay Line Computers” by Bodie Seneta (rev 1.0).

10

This section describes how the computers should connect to each other so that messages
can be passed between them as required for a functioning delay line. We assume that the
reader has a basic knowledge of C programming and the concept of interprocess commu-
nication using unix ports and sockets.

A.1 Definitions

For clarity we define the following:

Source A computer program that generates delay line messages.

Sink A computer program that receives delay line messages.

Command, command data, status, telemetry All are message types as set out above.

Controller A computer program that sends commands (a “command source”). Normally
the workstation is the only controller, but if there is a test program running on an-
other computer that sends commands then it is also a controller.

Controllee A computer program that accepts commands (a “command sink”). Con-
trollers and controllees need not be running on separate computers.

Port1, port2 Unix ethernet port numbers. Port16=port2. Port1 is used for status, telemetry
and command messages. Port2 is used for command data messages. The values
have not yet been defined but the current de-facto standard is to use ports 5000 and
5001.

SocketA, socketB,. . . ,socketF Unix sockets, which should be created using the socketlib
library (distributed with the serialise library described in “Serialise Network Mes-
sage Protocol”).

ProgamA, programB : Two programs that communicate with each other via a socket con-
nection.

A.2 The Connection Protocol

There are actually two connection protocols. The first is for establishing connections
where commands, status and telemetry information is exchanged and the second is for
command data, which has simpler requirements. In both cases, the protocol is the same
whether the delay line network is being initialised or a connection is being restored due
to a prior fault or a deliberate disconnection.

11

A.2.1 Command, status and telemetry connection protocol

This protocol makes use of the fact that a given controllee only sends telemetry and status
information to one other program (the controller) and only expects commands to arrive
from that same program.

1. Controllers should be initialised (possibly using CreateListenPort() from sock-
etlib) so that they listen for connection attempts from anywhere on socketA using
port1.

2. Controllees should initiate a connection with a controller by creating socketB (pos-
sibly by using ConnectToServer()) which is intended for transmission of status
and/or telemetry messages to the controller on port1. Controllers do not initiate
such connections1.

3. When the controller notices that a connection is being attempted on port1, it creates
socketC to receive subsequent messages from the controllee on port1 and to send
any commands to it (also using port1). As port1 connection attempts arrive from
other sources, further sockets are created as necessary.

4. When the controllee notices that socketC exists (that is, its attempt to create socketB
was successful), it should start to listen for incoming commands from the controller
using socketB.

5. The connection is now established. The controllee can use socketB to send status and
telemetry information to and receive commands from the controller. The controller
can use socketC to send commands to and receive telemetry and status information
from the controllee.

A.2.2 Command data connection protocol

For command data, a command data sink can expect command data to arrive from any-
where, but it does not need to send anything back to the source.

1. Command data sinks should be initialised so that they listen for command data from
anywhere using port2 on socketD.

2. A command data source initiates communication with a command data sink by cre-
ating socketE which is intended for transmission of command data using port2.

1Rationale: Under normal circumstances the controller is an always-online workstation, while controllees
are added to or removed from the network as needs dictate. It is sensible for controllees to announce their
presence to the controller when they appear on the network – otherwise the workstation would have to
periodically poll the network to discover which controllees were currently available.

12

3. The command data sink reacts by creating socketF for reception of subsequent com-
mand data from this source on port2. As messages arrive from other sources, further
sockets are created as necessary.

4. The connection is now established. The command data sink can receive command
data on socketF. The command data source can transmit command data on socketE.

A.3 The Disconnection Protocol

In the operational delay line, it is an error condition for any program to break an estab-
lished socket connection, even when this is deliberate, and it should be reported as such.
Hence a disconnection can be handled in much the same way whether one of the parties
deliberately disconnected or there was a system failure such as a network problem. The
disconnection protocol is the same for all kinds of source and sink:

1. ProgramA ceases communication with programB by ceasing to write to and/or read
from the corresponding socket. It then destroys the socket itself.

2. ProgramB notices communication with programA has stopped. It might do this by
timing out if it was expecting data from programA, or by noticing that messages to
programA fail to be sent, or by receiving a “hangup” signal from the socket (this
might take several minutes).

3. ProgramB then stops transmitting via the socket in question and destroys that socket.
The disconnection process is now complete.

B Commands & Data

This section gives details of the command and command data protocols outlined in Sec-
tion 3.3 above.

B.1 Command/Data Lists

In the listings that follow, the types of command parameters and data values are indicated
by means of the type codes understood by the Serialise library. A key to these type codes
is given in Table 2.

13

B.1.1 Workstation to VME System

Each command applies to the trolleys specified as part of the command, by means of the
“trolley mask”. This is an integer word (transmitted as an array of unit length) where, if
bit i is set, the command applies to trolley i. If bit i is unset, the state of trolley i remains
unchanged.

Each “TrajectoryN” data message applies to the trolley N specified in the message label.

The UTC in TrajectoryN shall be an integer number of seconds.

Command Parameters Type Comment
Follow Trolley mask H[1] Start OPD loop
Idle Trolley mask H[1] Stop OPD loop, zero carriage velocity
Datum Trolley mask H[1] Slew to datum, zero metrology
FringeTrackOn Trolley mask H[1] Apply FT offsets
FringeTrackOff Trolley mask H[1] Don’t apply FT offsets
ResetFTOffset Trolley mask H[1] Set total FT offset to zero
Data Label Values Type Rate Comment
TrajectoryN UTC, D[23] 1 Hz at which to realise 1st position

Time interval, between points
Position valid flag,
10×position, include intra-night offset
10×velocity

B.1.2 Workstation to Trolley Micros

Each command applies to the trolley whose micro it is sent to.

Command Parameters Type Comment
DoNothing – For testing
SteeringOn – Steering servo on
SteeringOff Steering position D[1]
TipTiltOn – Tip-tilt servo on
TipTiltOff Tip, tilt positions D[2]
FocusPos Position, timeout D[2]
FocusOffset Offset, timeout D[2]
DirectSlew Velocity D[1] To drive trolley when VME down
DirectSlewOff Velocity D[1] Drive trolley but let VME override

B.1.3 Workstation to Shear Detectors

Each command applies to the shear detector it is sent to.

14

Command Parameters Type Comment
SetFiducial X, Y D[2] Current fiducial returned in status
LogVideoOn M H[1] Save one image in every M
LogVideoOff – Stop saving images

B.1.4 Fringe Tracker to VME System

A possible use of the command protocol defined in this document for the external inter-
face to the Fringe Tracker would be as follows.

Each data message applies to all trolleys, and will include parameter values for all (some
of which may be zero/not valid).

Data Label Values Type Rate Comment
FTOffset Incremental offset D[10] <200 Hz Zero if data invalid

B.1.5 VME System to Trolley Micros

Each data message applies to the trolley whose micro it is sent to.

Data Label Values Type Rate Comment
Slew Carriage velocity D[1] 10 Hz
Track Velocity D[1] 10 Hz Velocity for feed forward
(Rate demand) Cat’s eye error signal 5 kHz Over low-latency link

B.1.6 Shear Detector to Trolley Micro

Each data message applies to the trolley whose micro it is sent to.

Data Label Values Type Rate Comment
TipTiltOffset Tip, Tilt offsets D[2] 30 Hz Current position in telemetry

B.2 Command/Data Message Format

The command/data message format is given in Table 3. The format makes use of the fact
that the Serialise library automatically encodes the data type of each message component,
to allow the array of command parameters/data values to take the most appropriate data
type (integer or floating point) for each command.

More details on serialise may be found in the serialise manual, entitled “Serialise Network
Message Protocol”. For convenience, the serialise type codes are reproduced in Table 2.

The same message format is used for both commands and data (reducing the amount
of coding), but distinct identifier strings and independent message version numbers are
used for the two applications.

15

Table 2: Type codes (format specifiers) supported by the serialise library. Please refer to
the serialise manual for more details.

s null-terminated string
i 32-bit integer
d 64-bit float
C array of characters
B array of 8-bit integers
H array of 16-bit integers
I array of 32-bit integers
L array of 64-bit integers (not yet implemented)
F array of 32-bit float
D array of 64-bit float
(start tuple (group)
) end tuple (group)
o pre-encoded object (serialising)/“any” object (deserialising)

Table 3: Command/data message format. Note that for commands, the source identifier
will always be “WKSTN”.

Type Item Description
(Message Start Mandatory for serialise

Identifier
s “MRO_DL” Common to all delay line messages
s “CMD”/”DATA” Identifies type of message
i Message version Incremented when command/data format

changed
Body

s Source Identifier See Table 4
i Tag Incremented by source when com-

mand/data message sent
s Command/data label e.g. “SteeringOn”, “TiptiltOffset”

H/I/L/F/D 1d parameter/value array Omitted if command takes no parameters
) Message End Mandatory for serialise

16

C Telemetry & Status

This section gives details of the telemetry and status protocols outlined in Section 3.4
above.

C.1 Telemetry and Status Items

The thinking behind the choice of status items is that the status messages should contain
sufficient information for the Workstation to conclude whether any of the commands in
Sec. B.1 has completed successfully. Note that the status message format only allows
boolean and 64-bit floating point data types.

C.1.1 Workstation Items

The following items are transmitted over the loopback interface, so that they are logged
etc.

Since the Workstation deals with all trolleys, there are equivalent items for each trolley. In
the list below, N stands for the number of the relevant trolley.

Sample
Item Rate /Hz Type Comment

Telemetry
PosDemN 10 Float64 Position demand
VelDemN 10 Float64 Velocity demand

C.1.2 VME Items

Since the VME system deals with all trolleys, there are equivalent status and telemetry
items for each trolley. In the list below, N stands for the number of the relevant trolley.

17

Sample
Item Rate /Hz Type Comment

Status
IdleN 10 Bool i.e. obeying ‘Follow off’
TrackN 10 Bool False if slewing
DatumSeekN 10 Bool True until metrology zeroed
FTrackN 10 Bool True if applying o/s from Fringe Tracker
PosN 10 Float64 Instantaneous metrology value
ErrorN 10 Float64 Mean OPD error over 0.1s window
JitterN 10 Float64 Std. dev. of OPD error over 0.1s window
MetStateN 10 Metrology state XXX define
FTOffsetN 10 Float64 Total FT offset

Telemetry
InterpPosN 5000 Float64 Interpolated WKSTN:PosDem
MetrologyN 5000 Float64 Metrology position
MetrolErrorN 5000 Float64 Position error
RateDemN 5000 Float64 Cat’s-eye error signal as transmitted /volt
VelDemN 10 Float64 Carriage demand velocity
FTIncrN <200 Float64 Incremental FT offset

C.1.3 Trolley Micro Items

Sample
Item Rate /Hz Type Comment

Status
SteeringOn 10 Bool
TiptiltOn 10 Bool
FocusOn 10 Bool
Idle 10 Bool
Track 10 Bool
DirectSlew 10 Bool Obeying slew override from workstation
(Limit switches) 10 XXX define
VelDem 10 Float64 Demand velocity
SteeringPos 10 Float64
Roll 10 Float64
TiptiltXPos 10 Float64
TiptiltYPos 10 Float64
FocusPos 10 Float64
Temp 10 Float64 Roving temperature
CoarsePos 10 Float64 Odometer reading

Telemetry
Continued on next page

18

Sample
Item Rate /Hz Type Comment
CoilDrive 5000 Float32 Cat’s-eye drive current
DiffPos 5000 Float32 Differential position
DiffVel 5000 Float32 Differential velocity
Loop1 5000 Float32 Output volts from RF link
Loop2 5000 Float32 Output volts from metrology loop-shaping stage of pre-amp
SteeringDem 10 Float32 Steering demand
MotorVel 100 Float32 Motor velocity
MotorDemI 100 Float32 Motor demand current
MotorI 100 Float32 Motor current
MotorPos 100 Float32 Motor position
CatsAccelX 5000 Float32 Cat’s-eye acceleration in X
CatsAccelY 5000 Float32 Cat’s-eye acceleration in Y
CarrAccelX 5000 Float32 Carriage acceleration in X
CarrAccelY 5000 Float32 Carriage acceleration in Y
VPri 100 Float32 Primary supply voltage
V+5 10 Float32 “+5V” actual voltage
V-5 10 Float32 “-5V” actual voltage
V+12 10 Float32 “+12V” actual voltage
V-12 10 Float32 “-12V” actual voltage
VStore 10 Float32 Onboard storage voltage
TFocus 10 Float32 Focus stage temp.
TPriCell 10 Float32 Primary mirror cell temp.
TCarrF 10 Float32 Carriage front temp.
TCarrR 10 Float32 Carriage rear temp.
RfSig 10 Float32 Low latency link signal strength

XXX power usage?

XXX Loop3 etc.?

19

C.1.4 Shear Detector Items

Sample
Item Rate /Hz Type Comment

Status
FiducialX 30 Float64
FiducialY 30 Float64
ShearSigX 30 Float64 w.r.t. fiducial
ShearSigY 30 Float64 w.r.t. fiducial
XValid 30 Bool
YValid 30 Bool
LoggingOn 30 Bool Shear logging on

Telemetry
ShearX 30 Float32 w.r.t. fiducial
ShearY 30 Float32 w.r.t. fiducial
ConfidenceX 30 Float32
ConfidenceY 30 Float32

C.2 Telemetry and Status Protocols

We refer to the Workstation as the “server”, with the VME CPU, trolley micros, and shear
sensor computers as “clients”. The server-side software shall allow any number of clients
to connect.

Clients send “chunks” of telemetry at 1 Hz (or faster if this is more convenient), and status
messages at 10 Hz (or faster). Each telemetry chunk may contain many data samples.
Multiple chunks of telemetry (each containing a different signal) may be concatenated
into a single message.

Each status message contains a heterogeneous set of numerical and boolean values. In the
simplest variation of the message format, these have a common timestamp. However, it is
permissible to concatenate several status units (each of which can contain multiple items)
in a single message, each unit having an independent timestamp.

Messages are transmitted from client to server over a TCP/IP socket connection. The
server listens on a pre-arranged TCP/IP port, and can accept connections from multiple
clients to that port.

In the current implementation, the server logs all telemetry and status received to a single
file on disk. The log file format is described in Sec. D.

C.3 Telemetry and Status Message Formats

Telemetry and status messages are encoded using the “Serialise” library , and transmitted
using sockets over TCP/IP.

20

The message formats (really flexible meta-formats) described here add another layer of
self-description to that provided by serialise. Each data item is accompanied by a label
and by meta-data such as the units and timing of the measurement. Hence additional
telemetry or status items can be added to the messages, and properly written receiving
code will log/display the new items as appropriate with no modifications to the code.

C.3.1 Telemetry Format Details

Each telemetry message contains separate identifier, header and data components. The
identifier identifies the category (telemetry or status) and version of the message. The in-
tention is that all delay line network messages have equivalent identifiers, encoded using
serialise. The header contains sufficient information to allow decoding and interpretation
of the data part that follows.

The format of a telemetry message is enumerated in Table 6. A key to the type codes may
be found in Table 2.

For chunks of length 5000 samples, the “sample index” for consecutive chunks would
be 0, 5000, 10000, . . . This allows missing data to be identified. The sample index would
normally be reset whenever the stream is reconfigured.

Heterogeneous telemetry information may be combined in a single message by joining
multiple header/data units onto the identifier. In other words, given that the basic mes-
sage enumerated in Table 6 has the format (I(H)D) (where I stands for the identifier, H
for the header items and D for the data part), a concatenated message is constructed as
(I(H)D(H)D. . .). Header/data units may appear in any order.

Each future change to this message format will require an increment of the version num-
ber.

C.3.2 Status Format Details

Each status message contains separate identifier, command acknowledgement, header
and data components. The format of a status message is enumerated in Table 7.

Each message incorporates a structure for zero, one or more command acknowledge-
ments, containing the following items:

• No. of commands received since previous status sent [Int]

For each command received, in order of receipt, the following items:

• Source of command [string]

• Command Tag (incremented at source each time any command sent) [Int]

21

Table 4: Sub-system identifiers used in delay line messages.

“WKSTN” Workstation
“VME” VME System
“TRLYn” Trolley n micro
“SHEARn” Shear sensor for trolley n
“FT” Fringe tracker (if applicable)

Table 6: Telemetry message format. Further header/data units may be added to the end
of the message, as described in the text.

Type Item Description
(Message Start Mandatory for serialise

Identifier
s “MRO_DL” Common to all delay line messages
s “TELE” Identifies type of message
i Message version Incremented when this format changed

Header
(Header Start
s Client Identifier See Table 4
i Client ConfigId Incremented when client’s set of streams

changed or stream(s) reconfigured
i Secondary Client Identifier Synchronous streams share same value
i Time offset /µs Relative offset from other streams with same

secondary client identifier
s Stream Identifier Label, e.g. “Rel_pos”
i Nominal sample rate /Hz
i No. of samples in chunk Not req’d to decode
s Type code for data “H”/“I”/“L”/“F”/“D”. Not req’d to decode
s Units e.g. “mm”
i Sample index Index of chunk’s 1st sample (see below)
d UTC of chunk’s 1st sample In seconds since the Unix epoch. “Time off-

set” is included.
) Header End

Data
H/I/F/D 1d data array Samples in time order

) Message End Mandatory for serialise

22

• Parse flags [Boolean values encoded as Byte array]:

– Command understood

– Parameters in range (TRUE if no parameters)

– Command will be (or has been) obeyed

If there are no numeric (boolean) status items, the NumLabel and NumUnits (BoolLabel)
component(s) shall be an empty tuple (), and the NumVal (BoolVal) component shall be
omitted.

Multiple status units, each with an independent timestamp, may be concatenated to form
a single message. Given that the basic message enumerated in Table 7 has the format
(IA(H)D) (where I stands for the identifier, A for the command acknowledgements, H
for the header items and D for the data part), a concatenated message is constructed as
(IA(H)D(H)D. . .). Header/data units should appear in time order.

D Log File Format

The format is based on FITS binary tables. Matlab (used to implement the data analysis
software) has a built-in capability to read these. They can also be read into C, Python and
IDL programs using third-party libraries.

D.1 FITS Primer

FITS binary tables are part of the core FITS standard (which is in widespread use in as-
tronomy), and provide a framework (meta-format) for storing heterogeneous data in a
compact binary form. The latest version of the FITS standard is version 2.1b.

FITS files consist of any number of header/data units (HDUs), each of which represents
an image, binary table, or ASCII table, together with associated metadata. Headers are
always encoded in ASCII, and contain a set of keywords and associated values. Certain
keywords have special meanings according to the FITS standard (for example they de-
scribe the structure of the data part of the HDU), but other application-specific keywords
can be included. For historical reasons, the first HDU can only contain an image (which
can be of zero size).

D.2 Structure of Telemetry/Status/Commands FITS File

Telemetry, status and command logs (for all trolleys) are saved to the same file, although
status and/or telemetry may be omitted, under the user’s control. A FITS log file as
defined in this document may contain any number of DL_TELEMETRY (Sec. D.4), and

23

Table 7: Status message format. Further header/data units may be added to the end of
the message, as described in the text.

Type Item Description
(Message Start Mandatory for serialise

Identifier
s “MRO_DL” Common to all delay line messages
s “STAT” Identifies type of message
i Message version Incremented when this format changed

Acknowledgements
i No. commands received since previous status sent

For each command received:
(Acknowledgement start
s Source of last command
i Command Tag Incremented at source when command sent

B[3] Parse flags See text
) Acknowledgement end

...
Header

(Header Start
s Client Identifier See Table 4
i Client ConfigId Incremented when set of status sent by client

changes
i Error severity See Table 8
s Error message Empty string if no error

(NBool×s) BoolLabel Labels for boolean status items, encoded as
tuple of strings

(NNum×s) NumLabel Labels for numeric status items, encoded as
tuple of strings

(NNum×s) NumUnits Units for numeric status items, encoded as
tuple of strings

d UTC timestamp for status In seconds since the Unix epoch
) Header End

Data
B[NBool] BoolVal Boolean status items, encoded as Int8 array
D[NNum] NumVal Numeric status items, encoded as Float64 ar-

ray
) Message End Mandatory for serialise

24

Table 8: Error severity codes used in status messages.

Value Meaning Comment
0 No error
1 Warning
2 Error
3 Fatal Client will cease execution

DL_STATUS (Sec. D.5) tables, plus one DL_CMD table (Sec. D.6). Generally the tables
appear in time order (with typically several tables of each type for the same time interval),
with groups of status and telemetry tables interleaved, but any table ordering is valid.

The timespan of the file may be a pre-set period of a few seconds, or else recording may
continue until stopped by the user. If the set of telemetry/status items sent by any client
changes (as indicated by the relevant ConfigId in the network messages), a new teleme-
try/status table (with different columns) is started and the previously active one is closed
(this type of client behaviour is discouraged).

In the sections that follow, serialise typecodes (Table 2) are used to indicate the data types
of keyword values/columns (FITS defines its own, different, typecodes).

D.3 Primary Header

The primary header (header of the first HDU) of the file contains no application-specific
keywords, and no mandatory keywords that it would be useful to read.

D.4 DL_TELEMETRY Table

A FITS log file as defined in this document may contain any number of DL_TELEMETRY
tables. The telemetry streams in each table are those that are time-synchronised with each
other (as indicated by the secondary client identifiers and time offsets in the telemetry
messages), and thus there will be at least one table per active client for each time interval.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of measurement as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss[.sss]
TTYPEn s Name of column (field) n (=stream identifier or “UTC”)
TUNITn s Units for column n

25

Other Keywords

Keyword Type Value
TBL_VER s Version number of table definition
CLID s Client identifier for streams in this table
SEC_CLID i Secondary client identifier for streams in this table
REFSTRM i Number of column containing reference stream data
SMPRATEn i Nominal sample rate for column n /Hz
TIMOFFn i Time offset from reference stream for column n /µs

Columns

Each table “cell” shall contain a one-dimensional array of telemetry samples. The array
lengths for different columns are chosen such that the data in each row of the table spans
the same time interval for all columns. The data type of each column shall match that
used in the telemetry messages for that stream.

A single column (of double precision type) with TTYPE=”UTC” contains periodic times-
tamps: each cell in this column contains an array (perhaps of length 1) giving the UTC
timestamps (in seconds relative to DATE-OBS) for the so-called reference stream. One such
timestamp comes from each telemetry network message. The column containing the data
for the reference stream is identified by the REFSTRM keyword, and will be the most
rapidly-sampled stream in the table. If several streams have equal-fastest sampling, one
is chosen arbitrarily as the reference stream to which the timestamps apply.

The table will normally be structured such that each row corresponds to a single chunk
of telemetry for the reference stream. For two synchronised streams A and B with sample
rates of 5 kHz and 10 Hz respectively, the table might be arranged as follows (where (. . .)
represents a single cell):

(1×UTC) (5000×A) (10×B)
(1×UTC) (5000×A) (10×B)
(1×UTC) (5000×A) (10×B)
etc.

D.5 DL_STATUS Table

A FITS log file may contain any number of DL_STATUS tables, perhaps with different
timespans. The status items from different clients shall be stored in separate tables. Both
boolean and numeric values (from the same client) are stored in each table.

26

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of measurement as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss[.sss]
TTYPEn s Name of column (field) n (=status item label or “UTC”)
TUNITn s Units for column n

Other Keywords

Keyword Type Value
TBL_VER s Version number of table definition
CLID s Client identifier for status items in this table

Columns

The table shall have columns of FITS logical type with a single boolean status value per
table cell, and columns of double precision type with a single numeric status value per
table cell. The timestamps for the status information are contained in a single double
precision column with TTYPEn of “UTC”.

If a client packages its status items for each interval in more than one message unit (in
order to encode the epochs of measurement more precisely), there will be one FITS row per
unit, and some of the values in the table will be NULL, encoded as per the FITS standard
(zero-valued byte for logical columns, IEEE NULL for double precision columns).

The following columns are also present, to store error information:

Column Type Value
SEVERITY i Error severity
ERRORMSG s Error message

Command acknowledgements are stored in the columns listed below. If the number of ac-
knowledgements in a status message exceeds the number of status units in the message,
an extra table row shall be included for each further command. Besides the acknowledge-
ment columns, other columns in these rows should contain the same values (including
timestamp) repeated.

Column Type Value
ICMD i Index of command in interval since last status message
CMDSRC s Source of command
CMDTAG i Command tag
PFLAGS B[3] Parse flags

27

D.6 DL_CMD Table

This table is used to log commands sent by the Workstation only.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of log as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss[.sss]
BLANK i Code for NULL in integer arrays

Other Keywords

Keyword Type Value
TBL_VER s Version number of table definition
CMDSRC s “WKSTN”

Columns

Column Type Value
DEST s Destination for command
CMDTAG i Command tag
CMD s Command label
IPAR I[n] Integer parameter values
FPAR D[m] Floating point parameter values

The dimensions n and m of the parameter arrays should be chosen to be sufficient for
all possible commands. Array cells that are superfluous for a particular command shall
contain NULL values encoded as per the FITS standard (for IPAR the value of BLANK in
the header, for FPAR the IEEE NULL value).

28

	Introduction
	Platforms

	Overview of Control Loops
	Focus Control
	Steering
	Shear Control (Secondary Tip/tilt)
	Optical Path Delay (Cat's-eye and Carriage Control)
	Tracking
	Slewing

	Control System Information Flow
	Design Aims
	Connection Protocol
	Commands & Command Data
	Telemetry & Status
	Message Formats

	Socket Initialisation Protocol
	Definitions
	The Connection Protocol
	Command, status and telemetry connection protocol
	Command data connection protocol

	The Disconnection Protocol

	Commands & Data
	Command/Data Lists
	Workstation to VME System
	Workstation to Trolley Micros
	Workstation to Shear Detectors
	Fringe Tracker to VME System
	VME System to Trolley Micros
	Shear Detector to Trolley Micro

	Command/Data Message Format

	Telemetry & Status
	Telemetry and Status Items
	Workstation Items
	VME Items
	Trolley Micro Items
	Shear Detector Items

	Telemetry and Status Protocols
	Telemetry and Status Message Formats
	Telemetry Format Details
	Status Format Details

	Log File Format
	FITS Primer
	Structure of Telemetry/Status/Commands FITS File
	Primary Header
	DL_TELEMETRY Table
	DL_STATUS Table
	DL_CMD Table

