MRO Delay Line

Network Message Protocols and
Telemetry/Status/Commands Log File Format

John Young

rev 0.13
30 May 2007

BN CAVENDISH
L\ ASTROPHYSICS

Cavendish Laboratory
Madingley Road
Cambridge CB3 OHE
UK

Change Record

| Revision | Date | Authors | Changes |
0.5 2006-02-24 | JSY Initial version
0.6 2006-04-27 | JSY Revised following internal discussions. Re-

moved code snippets — dlmsg library has its
own manual

0.8 2006-05-04 | JSY Small corrections. Added Table 1

0.9 2006-07-19 | EBS Actual command names

0.10 2007-01-19 | EBS Changes to status/telemetry/commands for
trolleys

0.11 2007-03-22 | JSY Agreed Trajectory message format, changes

to commands for VME, more actual com-
mand names

0.12 2007-05-30 | JSY Updated status/telemetry descriptions,
added MetrolError NV item

Objective

To propose network protocols for sending commands, status information and telemetry
between the sub-systems of the prototype delay line control system. To identify which
commands and telemetry/status items are sent to/from each sub-system. To propose a
tile format for archiving the telemetry and status information after it has arrived at the
Workstation, together with the commands issued by the Workstation.

Scope of this document

This document fleshes out the architecture of the prototype control system (outlined in
previous documents), by describing in detail the flow of information between the various
computers in the prototype delay line system. However, it does not provide a complete
description of the software that will be delivered.

We describe the internal messaging protocols designed to transmit this information. The
protocols encompass both control of the prototype delay line, and routing of telemetry
(for debugging) back to the Workstation.

We also describe a FITS-based file format for logging of commands, status, and telemetry
by the Workstation — this will be used to debug the prototype system.

As well as being a working document of the Cambridge Delay Line Team, this document
should also be useful to MRO in order to:

Provide information relevant to MRO'’s future decisions about which aspects of the
prototype system are to be re-used for MROI operations. This could be none, some
or all of:

— The basic architecture

— The message formats

— The file format

— The C code that implements messaging and logging

— The (mostly) C code for the entire prototype control system
If (part of) the prototype control system is re-used, assist in the design of external

interfaces to the delay line (e.g. from the Interferometer Control System and Fringe
Tracker). This point is discussed in Appendix

If the prototype control system is not re-used, inform the design of the the control
system to be used for operations

This document is likely to be revised as the prototype control system is implemented.

Summary

The protocols proposed for communication between prototype delay line sub-systems are
summarised in Table

1 Design Aims

The architecture and implementation described in this document were arrived at with the
following aims in mind:

Provide the capability to record all control signals (hardware and software), for de-
bugging the prototype delay line

Facilitate possible re-use of the architecture and/or code by MRO, both for fault
diagnosis over the lifetime of the interferometer and for observing

Use well-defined message protocols, and document these thoroughly

Provide a flexible messaging system, that allows e.g. adding/changing signals with
minimal knock-on effects

Use the same protocols for Phases 1 (initial tests) & 2 (as delivered to MRO) of the
prototype system control software

—

door asor) 00Z-0T UATIL “WIVAHS ‘ANA 1d ‘WIVAHS ‘HNA ‘NISMM eed puewuo)
pueurwod £5q0 uhsy UXTIL “WIVAHS ‘ANA NISIM puewwo)
pad307] I NISIM v Anawapa],

pa33o7 “pakerdsip
[OTJU0D [2AD[-W)SAS 0£-01 NISIM UIVAHS ‘GNA “UATIL snjels
JUSJUOD Jo 3s) ZE]/ 9rey "SSIN uoneunsa(] a01N0g adAy "Ssy

"UOTJeISIOM 9} Aq AT30311p Pad30][a1e spuewrwio)) “ejep a3} 30] 03 I9PIO Ul ‘AT}oWd[3) Se
we)sAs-qns 3urjeur3rio oy} Aq UOTIL)SYIOAN S} O} PaIWISULI} 91 Blep puewuod Jo sardod jey} aj0N '§ S[qe], Ur paisI]
SuR)sAs-qns aul[Ae[op 10§ SISYIIULPI pIepue)s ay} sasn a[qe} 9y], ‘sjodojoxd Surdessawr sury Aefop jo Arewrwng :1 a[qer,

2 Introduction

The architecture for the control system of the prototype delay line is described in the pre-
sentation given at MRO by JSY (INT-406-VEN-0006) and in the “Trolley Concept Descrip-
tion” (document identifier pending) delivered to MRO in January 2006.

The flow of information between the components of this control system is shown in Fig-
ure (Il Many of the signals are transmitted as messages over Ethernet; we categorise these
messages as follows:

1. Commands (& Acknowledgements)

2. (Command) Data:
information needed in real-time to close servo loops

3. Status

4. Telemetry

2.1 Commands & Command Data

We have distinguished between commands and command data (henceforth we will refer
to command data as “data” where this is unambiguous): the former are sent from the
Workstation to the delay line sub-systems, usually asynchronously. The latter (e.g. shear
offsets) are used to close servo loops in the system. Typically command data are trans-
mitted at a fixed rate from one specific sub-system to another. The relevant servo loop is
activated or deactivated in response to commands from the Workstation to the sub-system
receiving the data; typically the data is always sent whether the system state requires it or
not.

As described below, command acknowledgements are incorporated into the status mes-
sages transmitted to the Workstation. There are no explicit acknowledgements for data
messages.

Commands and their corresponding acknowledgements will be logged in the same file
as telemetry and status information (defined in the next section) — see Sec. 5l Command
data are logged by sending a copy of the data from the originating sub-system to the
Workstation as telemetry.

We give more details on the protocols for transmitting commands and data in Sec.

2.2 Telemetry & Status

We define telemetry to consist of “measurements” made primarily for debugging the de-
lay lines. We treat measurements from all physical sensors in the delay line system as

4

ICS Fringe

- Tracker 0
- I 1| GPS
External components‘\\\ I -] “\\% i
DL Control System \\\\\\ Offsets
X Archived Telemetry “
Display R & Status s
: 4
D P WORK Pos’ns & Velocitixi VME
STATION p R System
) (Linux) (RT Linux)
T y
Metrol
NTP Se rology
ystem
Shear —=p Trolley 1
—P» Sensor 1 Micro
(Linux) |jeegepyl (LiNUX) | «m— Low latency
rate corrections
Shear — Trolley 2 [« |
—» Sensor 2 Micro
(Linux) [P (Linux) [€=—
“ Shear t=——p Trolley N |
Sensor N M_iCTO I
(Linux) _>Shear (Linux)
offsets Velocity
‘ } ﬁ —_ > ========= :>
KEY: Commands, Telemetry Command Data Signals Undefined

& Status

Figure 1: Information flow in the control system for the prototype delay line. Dashed
lines (labelled “undefined”) indicate where interfaces to MROI components external to
the delay lines are envisaged, if the same architecture were to be used for operations. In
this diagram, “signals” are control signals transmitted via interfaces other than Ethernet.
These signals are not described any further in this document.

5

potential telemetry data. Telemetry can also include values of variables within the delay
line control software.

Detailed lists of the telemetry items identified thus far are given in Sec. We envisage
that telemetry is digitised and buffered locally before being transmitted (in “chunks” at
typically one-second intervals) over the Ethernet to the Workstation, where it is buffered
prior to possible archiving, processing and display.

We define “status” to consist of information used by the control system and by the user in
controlling the delay lines. By this definition status includes:

¢ Information (mostly boolean) about the state of a sub-system, which typically changes
in response to commands.

¢ Command acknowledgments, to provide near-immediate feedback on whether each
command was accepted.

¢ Information about whether the delay line is performing acceptably (e.g. OPD jitter)

¢ Information that should be displayed in real time (e.g. trolley position)

Status messages are sent at regular intervals (every ~0.1s). The message format allows
these to contain arbitrary boolean and numerical status items.

Special components of each status message indicate whether any commands have been
received since the previous status message was issued, and for each such command,
whether the command and any associated parameters are valid, and whether the com-
mand will be acted on. In this way the status message incorporates command acknowl-
edgement(s). Any subsequent changes of state in response to a command will be indicated
by (regular) status messages, i.e. changes in the status items listed in Sec.

The essential distinction between telemetry and status, as defined here, is that the former
is only employed (in near-real-time or after the fact) by the user to debug the system,
whereas status information is used by the control system and interactively by the user
in controlling the delay line (and may also be used for debugging purposes). This is
the reason for requiring status information to be sent more frequently compared with
telemetry chunks.

However, status information will be logged to the same file as telemetry, so that the user
can correlate the information when debugging the delay line.

In the proposed control system architecture, status and telemetry messages are only sent
to the Workstation (see Figure). In the prototype system, the Workstation contains all of
the system-level intelligence necessary to control the delay line.

The aim of this document is to propose self-describing message formats suitable for trans-
mission of all commands/data (Sec.[3), plus status messages and telemetry streams (Sec.[4).
A FITS-based file format for logging all of the communications is described in Sec.

3 Commands & Data

In this section we distinguish between data, streams of information used to close servo
loops; and commands, which are sent less regularly and for a variety of purposes. “Ac-
knowledgements” to all commands are incorporated into the status messages sent to the
Workstation. There is no explicit acknowledgement of data messages.

Each data item should also be transmitted from the originating sub-system to the Worksta-
tion as telemetry. The Workstation will transmit status and/or telemetry over a loopback
connection to itself, so that the information is automatically buffered and archived, pro-
cessed and/or displayed as appropriate.

3.1 Data Dropouts

If a stream of data ceases, this is an error condition. In general, the receiving sub-system
will immediately flag the error in a status message, but attempt to project forward from
previous data, in order to:

o Ameliorate the immediate effects of the data loss

e Minimise the time taken to recover once the data stream is restarted

However, this projection should be performed for a few seconds at most, because the pro-
jected data will become increasingly inaccurate, hence using them will be worse than as-
suming appropriate neutral values.

The bases for projection of the various data streams are expected to be:

Velocity from VME Constant velocity

Shear offsets Maintain last tip-tilt position

Note that the code that implements this projection is not intended to be elaborate.

3.2 Provisional Command/Data Lists

In the listings that follow, the types of command parameters and data values are indicated
by means of the type codes understood by the Serialise library. A key to these type codes
is given in Table

3.2.1 Workstation to VME System

Each command applies to the trolleys specified as part of the command, by means of the
“trolley mask”. This is an integer word (transmitted as an array of unit length) where, if
bit 7 is set, the command applies to trolley <. If bit ¢ is unset, the state of trolley ¢ remains
unchanged.

Each “Trajectory N” data message applies to the trolley N specified in the message label.

The UTC in Trajectory NV shall be an integer number of seconds.

Command Parameters Type Comment
Follow Trolley mask H[1] Start OPD loop
Idle Trolley mask H[1] Stop OPD loop, zero carriage velocity
Datum Trolley mask H[1] Slew to datum, zero metrology
FringeTrackOn Trolley mask H[1] Apply FT offsets
FringeTrackOff Trolley mask H[1] Don’t apply FT offsets
ResetFTOffset ~ Trolley mask H[1] Set total FT offset to zero
Data Label Values Type Rate Comment
Trajectory N UTC, D[23] 1Hz atwhich to realise 1st position
Time interval, between points
Position valid flag,
10x position, include intra-night offset
10xvelocity

3.2.2 Workstation to Trolley Micros

Each command applies to the trolley whose micro it is sent to.

Command Parameters Type Comment
DoNothing — For testing
SteeringOn - Steering servo on
SteeringOff Steering position D[1]

TipTiltOn - Tip-tilt servo on
TipTiltOft Tip, tilt positions 2

D[2]
FocusPos Position, timeout D[2]
FocusOffset Offset, timeout DI[2]

D[1] To drive trolley when VME down
D[1] Dirive trolley but let VME override

DirectSlew Velocity
DirectSlewOff Velocity

3.2.3 Workstation to Shear Detectors

Each command applies to the shear detector it is sent to.

Command Parameters Type Comment

SetFiducial X, Y D[2] Current fiducial returned in status
LogVideoOn M H[1] Save one image in every M
LogVideoOff - Stop saving images

3.2.4 Fringe Tracker to VME System

A possible use of the command protocol defined in this document for the external inter-
face to the Fringe Tracker would be as follows.

Each data message applies to all trolleys, and will include parameter values for all (some
of which may be zero/not valid).

Data Label Values Type Rate Comment
FTOffset Incremental offset D[10] <200Hz Zero if data invalid

3.2.5 VME System to Trolley Micros

Each data message applies to the trolley whose micro it is sent to.

Data Label Values Type Rate Comment

Slew Carriage velocity D[1] 10Hz

Track Velocity D[1] 10Hz Velocity for feed forward
(Rate demand) Cat’s eye error signal 5kHz Over low-latency link

3.2.6 Shear Detector to Trolley Micro

Each data message applies to the trolley whose micro it is sent to.

Data Label Values Type Rate Comment
TipTiltOffset Tip, Tilt offsets D[2] 30Hz Current position in telemetry

3.3 Command/Data Message Format

The proposed message format is given in Table[3 We have assumed the use of DFB’s “Seri-
alise” library, to match what has been agreed for telemetry /status messages (see Sec.4.5).
The format makes use of the fact that serialise automatically encodes the data type of each
message component, to allow the array of command parameters/data values to take the
most appropriate data type (integer or floating point) for each command.

More details on serialise may be found in the serialise manual, entitled “Serialise Network
Message Protocol”. For convenience, the serialise type codes are reproduced in Table

Table 2: Type codes (format specifiers) supported by the serialise library. Please refer to
the serialise manual for more details.

O— ~OHOo—~TmNarun

null-terminated string

32-bit integer

64-bit float

array of characters

array of 8-bit integers

array of 16-bit integers

array of 32-bit integers

array of 64-bit integers (not yet implemented)
array of 32-bit float

array of 64-bit float

start tuple (group)

end tuple (group)

pre-encoded object (serialising)/“any” object (deserialising)

As defined, the message format can be used for both commands and data, but distinct
identifier strings and independent message version numbers will be used for the two

applications.

C library functions to send and receive commands and data are being developed.

4 Telemetry & Status

4.1 Telemetry Characteristics

The common features of the various telemetry streams are:

¢ Typically 16-bit samples (with exceptions, e.g. each metrology datum has 36 bits),
although these may need scaling and offsetting to convert to physical units.

The telemetry formats should accommodate integers up to 64 bits (XXX need to add
64-bit integer support to serialise) and floating point values up to 64 bits.

¢ Regular sampling

¢ Different sampling rates for different streams (10 Hz to 5 kHz)

¢ Sampling synchronised with a local free-running clock; times of samples not directly
tied to GPS time

10

Table 3: Command/data message format. Note that for commands, the source identifier
will always be “WKSTN”.

Type Item Description
(Message Start Mandatory for serialise
Identifier
“MRO_DL” Common to all delay line messages
“CMD” /”"DATA” Identifies type of message
Message version Incremented when command/data format
changed
Body
s Source Identifier See Table
i Tag Incremented by source when com-
mand /data message sent
s Command/data label e.g. “SteeringOn”, “TiptiltOffset”
H/I/L/E/D 1d parameter/value array Omitted if command takes no parameters
) Message End Mandatory for serialise

Table 4: Sub-system identifiers used in delay line messages.

“WKSTN” Workstation

“VME” VME System

“TRLYn” Trolley n micro

“SHEARn” Shear sensor for trolley n
“FT” Fringe tracker (if applicable)

— Sampling will not be occasionally re-synchronised with GPS time

— Some streams will automatically be synchronised with others (as they will be
digitised on the same board) — desirable to encode this fact

- However, with some (all?) ADC boards the sampling of the streams digitised
by each board will be interleaved, as the board only has a single ADC device —
desirable to encode time offsets

¢ Samples can be stamped according to NTP time of measurement, derived from GPS
time. For higher sample rates, time-stamping will be every N samples

¢ Each sub-system generally sends the same set of telemetry items at all times

¢ Streams may stop and re-start, e.g. when a sub-system is reset

11

Note that images from the shear sensors will be logged directly by the shear sensor com-
puters, rather than via the Workstation. Hence the protocols described in this document
will not need to handle image data.

4.2 Status Characteristics

The common features of the various status messages are:

¢ Contain both boolean (true or false) and numerical (e.g. OPD jitter) status items
e Sent at ~10Hz (30 Hz from the shear sensors)

¢ Each sub-system generally sends the same set of status items at all times; the Work-
station chooses subsets to archive and display based on user input

Transmission of telemetry/status from different sub-systems will be staggered (use of
NTP will be sufficient to synchronise this), to avoid overloading the network.

4.3 Telemetry and Status Items

The status items sent from each sub-system to the Workstation should include at least
the items given below. The thinking behind these choices is that the status messages
should contain sufficient information for the Workstation to conclude whether any of the
commands in Sec. [3.2 has completed successfully. Note that the status message format
only allows boolean and 64-bit floating point data types.

For completeness, we also list the telemetry items identified thus far.

4.3.1 Workstation Items

The following items will be transmitted over the loopback interface, so that they are
logged etc.

Since the Workstation deals with all trolleys, there are equivalent items for each trolley. In
the list below, N stands for the number of the relevant trolley.

Sample
Item Rate /Hz Type Comment
Telemetry
PosDem /N 10 Float64 Position demand
VelDem N 10 Float64 Velocity demand

12

4.3.2 VME Items

Since the VME system deals with all trolleys, there are equivalent status and telemetry
items for each trolley. In the list below, N stands for the number of the relevant trolley.

Sample
Item Rate /Hz Type Comment
Status
IdleN 10 Bool i.e. obeying ‘Follow off’
Track NV 10 Bool False if slewing
DatumSeek N 10 Bool True until metrology zeroed
FTrack N 10 Bool True if applying o/s from Fringe Tracker
PosN 10 Float64 Instantaneous metrology value
ErrorN 10 Floatt4 Mean OPD error over 0.1s window
Jitter V 10 Float64 Std. dev. of OPD error over 0.1s window
MetState NV 10 Metrology state XXX define
FTOfAfset N 10 Float64 Total FT offset
Telemetry
InterpPosN 5000 Float64 Interpolated WKSTN:PosDem
Metrology N 5000 Float64 Metrology position
MetrolError N 5000 Float64 Position error
RateDem/N 5000 Float64 Cat’s-eye error signal as transmitted /volt
VelDemN 10 Float64 Carriage demand velocity
FTIncrN <200 Float64 Incremental FT offset
4.3.3 Trolley Micro Items
Sample
Item Rate /Hz Type Comment
Status
SteeringOn 10 Bool
TiptiltOn 10 Bool
FocusOn 10 Bool
Idle 10 Bool
Track 10 Bool
DirectSlew 10 Bool Obeying slew override from workstation
(Limit switches) 10 XXX define
VelDem 10 Float64 Demand velocity
SteeringPos 10 Floatt4
Roll 10 Floatt4
TiptiltXPos 10 Float6t4
TiptiltYPos 10 Float6t4

Continued on next page

13

Sample

Item Rate /Hz Type Comment

FocusPos 10 Float64

Temp 10 Float64 Roving temperature

CoarsePos 10 Float64 Odometer reading
Telemetry

CoilDrive 5000 Float32 Cat’s-eye drive current

DiffPos 5000 Float32 Differential position

DiffVel 5000 Float32 Differential velocity

Loop1l 5000 Float32 Output volts from RF link

Loop2 5000 Float32 Output volts from metrology loop-shaping stage of pre-amp

SteeringDem 10 Float32 Steering demand

Motor Vel 100 Float32 Motor velocity

MotorDeml 100 Float32 Motor demand current

Motorl 100 Float32 Motor current

MotorPos 100 Float32 Motor position

CatsAccelX 5000 Float32 Cat’s-eye acceleration in X

CatsAccelY 5000 Float32 Cat’s-eye acceleration in Y

CarrAccelX 5000 Float32 Carriage acceleration in X

CarrAccelY 5000 Float32 Carriage accelerationin'Y

VPri 100 Float32 Primary supply voltage

V+5 10 Float32 “+5V” actual voltage

V-5 10 Float32 “-5V” actual voltage

V+12 10 Float32 “+12V” actual voltage

V-12 10 Float32 “-12V” actual voltage

VStore 10 Float32 Onboard storage voltage

TFocus 10 Float32 Focus stage temp.

TPriCell 10 Float32 Primary mirror cell temp.

TCarrF 10 Float32 Carriage front temp.

TCarrR 10 Float32 Carriage rear temp.

RfSig 10 Float32 Low latency link signal strength

XXX power usage?
XXX Loop3 etc.?

14

4.3.4 Shear Detector Items

Sample
Item Rate /Hz Type Comment
Status
FiducialX 30 Float64
FiducialY 30 Float64
ShearSigX 30 Float64 w.r.t. fiducial
ShearSigY 30 Float64 w.r.t. fiducial
XValid 30 Bool
YValid 30 Bool
LoggingOn 30 Bool Shear logging on
Telemetry
ShearX 30 Float32 w.r.t. fiducial
ShearY 30 Float32 w.r.t. fiducial

ConfidenceX 30 Float32
ConfidenceY 30 Float32

4.4 Telemetry and Status Protocols

We refer to the Workstation as the “server”, with the VME CPU, trolley micros, and shear
sensor computers as “clients”. The server-side software shall allow any number of clients
to connect.

Clients send “chunks” of telemetry at 1 Hz (or faster if this is more convenient), and status
messages at 10Hz (or faster). Each telemetry chunk may contain many data samples.
Multiple chunks of telemetry (each containing a different signal) may be concatenated
into a single message.

Each status message contains a heterogeneous set of numerical and boolean values. In the
simplest variation of the message format, these have a common timestamp. However, it is
permissible to concatenate several status units (each of which can contain multiple items)
in a single message, each unit having an independent timestamp.

Messages are transmitted from client to server over a TCP/IP socket connection. The
server listens on a pre-arranged TCP/IP port, and can accept connections from multiple
clients to that port.

In the initial (Phase 1) implementation, the server will log all telemetry and status received
to a single file on disk. An interface to Matlab will be written, allowing a simple Matlab
script to extract the data corresponding to a particular telemetry stream/status item from
this single file. A proposed log file format is described in Sec.

Later versions of the server-side software (Phase 2) will allow near-real-time display and
analysis of telemetry, as well as selective archiving.

15

4.5 Message Formats
4.5.1 Rationale

Messages are encoded using DFB’s “Serialise” library , and transmitted using sockets over
TCP/IP. The serialise library implements a compact yet flexible binary representation, and
is described in the serialise manual. Serialise implements messages that are automatically
self-describing in the sense that the receiving software can deduce the contained data
types/lengths and their order/grouping from just the message itself.

The message format (really a flexible meta-format) described here adds another layer of
self-description which labels each data item and provides ancillary information such as
the units and timing of the measurement. Hence additional telemetry or status items can
be added to the messages, and properly written receiving code will log/display the new
items as appropriate with no modifications to the code.

4.5.2 Telemetry Format Details

Each telemetry message contains separate identifier, header and data components. The
identifier identifies the category (telemetry or status) and version of the message. The in-
tention is that all delay line network messages have equivalent identifiers, encoded using
serialise. The header contains sufficient information to allow decoding and interpretation
of the data part that follows.

The format of a telemetry message is enumerated in Table[6| A key to the type codes may
be found in Table

For chunks of length 5000 samples, the “sample index” for consecutive chunks would
be 0, 5000, 10000, ... This allows missing data to be identified. The sample index would
normally be reset whenever the stream is reconfigured.

Heterogeneous telemetry information may be combined in a single message by joining
multiple header/data units onto the identifier. In other words, given that the basic mes-
sage enumerated in Table [p| has the format (I(H)D) (where I stands for the identifier, H
for the header items and D for the data part), a concatenated message is constructed as
(IH)D(H)D...). Header/data units may appear in any order.

Once we have agreed the message format, the version number will be set to unity and
each further change will require an increment of this number.

4.5.3 Status Format Details

Each status message contains separate identifier, command acknowledgement, header
and data components. The format of a status message is enumerated in Table 7]

Each message incorporates a structure for zero, one or more command acknowledge-
ments, containing the following items:

16

Table 6: Telemetry message format. Further header/data units may be added to the end
of the message, as described in the text.

Type Item Description
(Message Start Mandatory for serialise
Identifier
“MRO_DL” Common to all delay line messages
“TELE” Identifies type of message
Message version Incremented when this format changed
Header
(Header Start
s Client Identifier See Table
i Client Configld Incremented when client’s set of streams
changed or stream(s) reconfigured
i Secondary Client Identifier Synchronous streams share same value
i Time offset /s Relative offset from other streams with same
secondary client identifier
s Stream Identifier Label, e.g. “Rel_pos”
i Nominal sample rate /Hz
i No. of samples in chunk Not req’d to decode
S Type code for data “H”/“1”/"L”/“F”/*“D”. Not req’d to decode
s Units e.g. “mm”
i Sample index Index of chunk’s 1st sample (see below)
d UTC of chunk’s 1st sample In seconds since the Unix epoch. “Time off-
set” is included.
) Header End
Data
H/I/F/D 1d data array Samples in time order
) Message End Mandatory for serialise

* No. of commands received since previous status sent [Int]

For each command received, in order of receipt, the following items:

* Source of command [string]

¢ Command Tag (incremented at source each time any command sent) [Int]

¢ Parse flags [Boolean values encoded as Byte array]:

— Command understood

17

— Parameters in range (TRUE if no parameters)

— Command will be (or has been) obeyed

If there are no numeric (boolean) status items, the NumLabel and NumUnits (BoolLabel)
component(s) shall be an empty tuple (), and the NumVal (BoolVal) component shall be
omitted (I am presuming serialise does not allow a zero-length array).

Multiple status units, each with an independent timestamp, may be concatenated to form
a single message. Given that the basic message enumerated in Table [7| has the format
(IA(H)D) (where I stands for the identifier, A for the command acknowledgements, H
for the header items and D for the data part), a concatenated message is constructed as
(IA(H)D(H)D...). Header/data units should appear in time order.

4.54 Implementation

A Clibrary to facilitate composing, transmitting, receiving and decoding telemetry /status
messages is currently under development. This library will be described in its own man-
ual.

5 Log File Format

The proposed format is based on FITS binary tables, as Matlab has a built-in capability
to read these (they can also be read into C, Python and IDL programs using third-party
libraries), and JSY has experience of calling the cfitsio library from C to write such files.

5.1 FITS Primer

FITS binary tables are part of the core FITS standard (which is in widespread use in as-
tronomy), and provide a framework (meta-format) for storing heterogeneous data in a
compact binary form. The latest version of the FITS standard is version 2.1b.

FITS files consist of any number of header/data units (HDUs), each of which represents
an image, binary table, or ASCII table, together with associated metadata. Headers are
always encoded in ASCII, and contain a set of keywords and associated values. Certain
keywords have special meanings according to the FITS standard (for example they de-
scribe the structure of the data part of the HDU), but other application-specific keywords
can be included. For historical reasons, the first HDU can only contain an image (which
can be of zero size).

18

Table 7: Status message format. Further header/data units may be added to the end of
the message, as described in the text.

Type Item Description
(Message Start Mandatory for serialise
Identifier
“MRO_DL” Common to all delay line messages
“STAT” Identities type of message
Message version Incremented when this format changed
Acknowledgements
1 No. commands received since previous status sent
For each command received:
(Acknowledgement start
s Source of last command
i Command Tag Incremented at source when command sent
B[3] Parse flags See text
) Acknowledgement end
Header
(Header Start
s Client Identifier See Table 4]
i Client Configld Incremented when set of status sent by client
changes
i Error severity See Table
S Error message Empty string if no error
(NBoolxs) BoolLabel Labels for boolean status items, encoded as
tuple of strings
(NNumxs) NumLabel Labels for numeric status items, encoded as
tuple of strings
(NNumxs) NumUnits Units for numeric status items, encoded as
tuple of strings
d UTC timestamp for status In seconds since the Unix epoch
) Header End
Data
B[NBool] BoolVal Boolean status items, encoded as Int8 array
D[NNum] NumVal Numeric status items, encoded as Float64 ar-
ray
) Message End Mandatory for serialise

19

Table 8: Error severity codes used in status messages.

Value Meaning Comment
0 No error
1 Warning
2 Error
3 Fatal Client will cease execution

5.2 Structure of Telemetry/Status/Commands FITS File

Telemetry, status and command logs (for all trolleys) are saved to the same file, although
status and/or telemetry may be omitted, under the user’s control. A FITS log file as
defined in this document may contain any number of DL_TELEMETRY (Sec. [5.4), and
DL_STATUS (Sec. tables, plus one DL_CMD table (Sec.[5.6). Generally the tables will
appear in time order (with typically several tables of each type for the same time interval),
with groups of status and telemetry tables interleaved, but any table ordering is valid.

The timespan of the file may be a pre-set period of a few seconds, or else recording may
continue until stopped by the user. If the set of telemetry/status items sent by any client
changes (as indicated by the relevant Configld in the network messages), a new teleme-
try/status table (with different columns) is started and the previously active one is closed.

In the sections that follow, serialise typecodes (Table[2)) are used to indicate the data types
of keyword values/columns (FITS defines its own, different, typecodes).
5.3 Primary Header

The primary header (header of the first HDU) of the file contains no application-specific
keywords, and no mandatory keywords that it would be useful to read.

54 DL_TELEMETRY Table

A FITS log file as defined in this document may contain any number of DL_TELEMETRY
tables. The telemetry streams in each table are those that are time-synchronised with each
other (as indicated by the secondary client identifiers and time offsets in the telemetry
messages), and thus there will be at least one table per active client for each time interval.

20

Keywords defined by the FITS Standard

Keyword Type Value

DATE-OBS s Start UTC of measurement as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss[.sss]
TTYPEn S Name of column (field) n (=stream identifier or “UTC")
TUNITn s Units for column n

Other Keywords

Keyword Type Value

TBL_VER S Version number of table definition

CLID S Client identifier for streams in this table

SEC CLID i Secondary client identifier for streams in this table
REFSTRM i Number of column containing reference stream data
SMPRATEn i Nominal sample rate for column n /Hz

TIMOFFn i Time offset from reference stream for column n /us

Columns

Each table “cell” shall contain a one-dimensional array of telemetry samples. The array
lengths for different columns are chosen such that the data in each row of the table spans
the same time interval for all columns. The data type of each column shall match that
used in the telemetry messages for that stream.

A single column (of double precision type) with TTYPE="UTC” contains periodic times-
tamps: each cell in this column contains an array (perhaps of length 1) giving the UTC
timestamps (in seconds relative to DATE-OBS) for the so-called reference stream. One such
timestamp comes from each telemetry network message. The column containing the data
for the reference stream is identified by the REFSTRM keyword, and will be the most
rapidly-sampled stream in the table. If several streams have equal-fastest sampling, one
will be chosen arbitrarily as the reference stream to which the timestamps apply.

The table will normally be structured such that each row corresponds to a single chunk
of telemetry for the reference stream. For two synchronised streams A and B with sample
rates of 5kHz and 10 Hz respectively, the table might be arranged as follows (where (...)
represents a single cell):

(1xUTC) (5000x A) (10xB)
(1xUTC) (5000x A) (10xB)
(1xUTC) (5000x A) (10xB)
etc.

21

5.5 DL_STATUS Table
A FITS log file may contain any number of DL_STATUS tables, perhaps with different

timespans. The status items from different clients shall be stored in separate tables. Both
boolean and numeric values (from the same client) are stored in each table.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of measurement as yyyy-mm-ddThh:mm:ss[.sss]

DATE s UTC when file written as yyyy-mm-ddThh:mm:ss[.sss]
TTYPEn S Name of column (field) n (=status item label or “UTC")
TUNITn S Units for column n

Other Keywords
Keyword Type Value
TBL_VER s Version number of table definition
CLID s Client identifier for status items in this table

Columns

The table shall have columns of FITS logical type with a single boolean status value per
table cell, and columns of double precision type with a single numeric status value per
table cell. The timestamps for the status information are contained in a single double
precision column with TTYPEn of “UTC”.

If a client packages its status items for each interval in more than one message unit (in
order to encode the epochs of measurement more precisely), there will be one FITS row per
unit, and some of the values in the table will be NULL, encoded as per the FITS standard
(zero-valued byte for logical columns, IEEE NULL for double precision columns).

The following columns are also present, to store error information:

Column Type Value
SEVERITY i Error severity
ERRORMSG s Error message

Command acknowledgements are stored in the columns listed below. If the number of ac-
knowledgements in a status message exceeds the number of status units in the message,
an extra table row shall be included for each further command. Besides the acknowledge-
ment columns, other columns in these rows should contain the same values (including
timestamp) repeated.

22

Column Type Value

ICMD i Index of command in interval since last status message
CMDSRC s Source of command
CMDTAG i Command tag

PFLAGS B[3] Parse flags

5.6 DL_CMD Table

This table is used to log commands sent by the Workstation only.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of log as yyyy-mm-ddThh:mm:ss[.sss]

DATE s UTC when file written as yyyy-mm-ddThh:mm:ss[.sss]
BLANK i Code for NULL in integer arrays
Other Keywords
Keyword Type Value
TBL_VER s Version number of table definition
CMDSRC s “WKSTN”
Columns

Column Type Value

DEST S Destination for command
CMDTAG i Command tag

CMD S Command label

IPAR IlIn] Integer parameter values

FPAR D[m] Floating point parameter values

The dimensions n and m of the parameter arrays should be chosen to be sufficient for
all possible commands. Array cells that are superfluous for a particular command shall
contain NULL values encoded as per the FITS standard (for IPAR the value of BLANK in

the header, for FPAR the IEEE NULL value).

23

A Possibilities for interfacing the delay line control system
to the Interferometer Control System

In this section we make some suggestions as to how a delay line control system with
the internal communications architecture described in this document could be interfaced
with the top-level Interferometer Control System (ICS). We are not necessarily advocating
either of the approaches described here; rather they are presented as a possible starting
point for discussions.

We outline two possible ways of interfacing the delay line control system (DLCS) to the
ICS. Adoption of either strategy would allow the majority of the delivered code to be re-
used. Of course, other approaches have their own advantages, which would need to be
weighed against any advantages of re-using Cambridge code.

1. “Opaque approach”: Treat delay line as “black box”, Workstation communicates
with ICS via some protocol to be defined.

2. “Transparent approach”: Workstation forwards commands from ICS, and forwards
status and telemetry to ICS, using the protocols defined here.

A.1 Opaque Approach

This strategy is the equivalent to that being adopted for the Unit Telescopes. An interface
layer, running on the Workstation, would be added to the DLCS. System-level commands
would be sent from the ICS, and corresponding status information (as defined in Sec-
tion transmitted in the reverse direction. Communication between the ICS and the
DLCS interface layer would involve a different protocol (yet to be defined) to those de-
scribed in this document.

Telemetry could either be transmitted to the ICS, or archived on the Workstation. In the
latter case the tools provided with the DLCS would be used to inspect telemetry, and
hence debug any problems with the delay line.

A.2 Transparent Approach

In this approach the ICS would take over some of the functionality of the Workstation (at
least the provision of the system-level intelligence that coordinates actions of the delay line
sub-systems). The Workstation would forward command messages from the ICS to the
appropriate delay line sub-systems, and forward status and (perhaps) telemetry messages
originating from sub-systems to the ICS. The protocols defined in this document could be
used with minimal changes.

A variation on this strategy would be to allow the ICS to communicate with delay line
sub-systems directly.

24

	Design Aims
	Introduction
	Commands & Command Data
	Telemetry & Status

	Commands & Data
	Data Dropouts
	Provisional Command/Data Lists
	Workstation to VME System
	Workstation to Trolley Micros
	Workstation to Shear Detectors
	Fringe Tracker to VME System
	VME System to Trolley Micros
	Shear Detector to Trolley Micro

	Command/Data Message Format

	Telemetry & Status
	Telemetry Characteristics
	Status Characteristics
	Telemetry and Status Items
	Workstation Items
	VME Items
	Trolley Micro Items
	Shear Detector Items

	Telemetry and Status Protocols
	Message Formats
	Rationale
	Telemetry Format Details
	Status Format Details
	Implementation

	Log File Format
	FITS Primer
	Structure of Telemetry/Status/Commands FITS File
	Primary Header
	DL_TELEMETRY Table
	DL_STATUS Table
	DL_CMD Table

	Possibilities for interfacing the delay line control system to the Interferometer Control System
	Opaque Approach
	Transparent Approach

