
MRO Delay Line

Network Message Protocols and
Telemetry/Status/Logs File Format

John Young

rev 1.1
18 June 2010

Cavendish Laboratory
JJ Thomson Avenue

Cambridge CB3 0HE
UK

Change Record

Revision Date Authors Changes
0.5 2006-02-24 JSY Initial version
0.6 2006-04-27 JSY Revised following internal discussions. Re-

moved code snippets — dlmsg library has its
own manual

0.8 2006-05-04 JSY Small corrections. Added Table 1
0.9 2006-07-19 EBS Actual command names

0.10 2007-01-19 EBS Changes to status/telemetry/commands for
trolleys

0.11 2007-03-22 JSY Agreed Trajectory message format, changes
to commands for VME, more actual com-
mand names

0.12 2007-05-30 JSY Updated status/telemetry descriptions,
added MetrolErrorN item

0.14 2008-03-27 JSY Added note about current DL_TELEMETRY
implementation

0.15 2009-04-03 JSY Workstation status/telemetry names no
longer have suffixes; all items now listed.
Corrections to trolley items. Corrections to
FITS format

0.16 2009-09-04 JSY Version 2 status message format
0.17 2009-11-18 JSY DL_LOG FITS table
1.0 2010-01-13 JSY Updated Table 1. Removed command data

from FT. Added telemetry format extension
for shearcam video. Restructured document
and incorporated socket connection proto-
col. Updated introduction for Production
Software PDR, deleted appendix containing
old suggestions for production software ar-
chitecture

1.1 2010-06-18 EBS Added Agilent hardware status booleans to
Subsubsection C.1.2

Objective

To describe the network protocols for sending commands, status information and teleme-
try between the sub-systems of the delay line control system. To identify which com-
mands and telemetry/status items are sent to/from each sub-system. To describe the
FITS-based file format used to record telemetry and status information and to log com-

1

mands and diagnostic messages, when the delay line control system is operating in a
standalone mode.

Scope of this document

This document provides a detailed description of the protocols used for inter-subsystem
communication over Ethernet in the delay line control system. These communications
encompass both control of the delay lines and routing of status information and diagnostic
telemetry to the delay line Workstation (and hence to the ISS). We also describe the FITS-
based file format used by the workstation software for recording status and telemetry,
and logging commands and diagnostic messages, whose structure is closely related to the
network message formats.

The same internal communication protocols will be used by the components of the deliv-
ered prototype and production software, so this document applies equally to both sets of
software.

Reference Documents

RD1 Production Delay Line Control Software Architecture INT-406-VEN-xxxx

RD2 dlmsg Library Manual (distributed with the dlmsg library source code)

Applicable Documents

AD1 Trolley Electronics Design Description INT-406-VEN-0112

Acronyms and Abbreviations

API Application Programming Interface

DL Delay lines

dlmsg Cavendish delay line messaging protocol

ISS Interferometer Supervisory System

MROI Magdalena Ridge Observatory Interferometer

OPD Optical Path Difference

2

VME VERSAmodule Eurocard, bus type used by the delay line Metrology computer

3

Contents

1 Introduction 6

2 Control System Information Flow 6

2.1 Design Aims . 9

2.2 Connection Protocol . 9

2.3 Commands & Command Data . 9

2.4 Telemetry & Status . 10

2.5 Message Formats . 11

2.6 Implementation . 11

A Socket Initialisation Protocol 12

A.1 Definitions . 12

A.2 The Connection Protocol . 12

A.2.1 Command, status and telemetry connection protocol 13

A.2.2 Command data connection protocol 13

A.3 The Disconnection Protocol . 14

B Commands & Data 14

B.1 Command/Data Lists . 14

B.1.1 Workstation to VME Metrology System 15

B.1.2 Workstation to Trolley Micros . 15

B.1.3 Workstation to Shear Sensors . 15

B.1.4 VME Metrology System to Trolley Micros 16

B.1.5 Shear Sensor to Trolley Micro . 16

B.2 Command/Data Message Format . 16

C Telemetry & Status 16

C.1 Telemetry and Status Items . 18

C.1.1 Workstation Items . 18

C.1.2 VME Metrology Items . 20

C.1.3 Trolley Micro Items . 21

C.1.4 Shear Sensor Items . 22

4

C.2 Telemetry and Status Protocols . 22

C.2.1 Telemetry Format Details . 23

C.3 Extension to telemetry message format for shear camera video 23

C.3.1 Status Format Details . 26

D Log File Format 26

D.1 FITS Primer . 28

D.2 Structure of Telemetry/Status/Logs FITS File 28

D.3 Primary Header . 29

D.4 DL_TELEMETRY Table . 29

D.5 DL_STATUS Table . 30

D.6 DL_CMD Table . 31

D.7 DL_LOG Table . 32

5

1 Introduction

The delay line control system is a distributed, event-driven system, comprising software
running on the following computers:

• A “workstation” PC (shared between all delay lines) to act as a system controller.

• A VME-bus CPU (shared between all delay lines) to read the metrology signal and
hence control the Cat’s-eye.

• A low-power PC104 single-board micro on each trolley, to control onboard functions
with undemanding timing requirements, and to send telemetry to the Workstation.

• A rack-mounted PC connected to each shear camera, to capture camera frames and
compute shear corrections which are applied to the Cat’s-eye secondary tip-tilt stage.

The production workstation software will provide command and monitoring interfaces to
the MRO Interferometer Supervisory System (ISS). The workstation software (both pro-
totype and production) also provides a user interface for operating the delay line in a
standalone mode.

The architecture of the production delay line control system is described more fully in
RD1.

2 Control System Information Flow

The flow of information between the sub-components of the control system is shown in
Figure 1. Many of the signals are transmitted as messages over Ethernet; we categorise
these messages as follows:

1. Commands (& Acknowledgements)

2. (Command) Data:
information needed in real-time to close servo loops

3. Status (includes command acknowledgements and log/fault messages)

4. Telemetry

The messaging protocols described in the following sections are summarised in Table 1.

6

Vel feedforward

Shear

Shearcam N

Trolley 1
(Linux)

Shearcam 1
(Linux)

Trolley 2

Shearcam 2

Telemetry
/Status

/Commands

Trolley N

Low
-latency r a

te co
rrection s

Metrology

Trajectories
Workstation

(Linux)

VME
(QNX or Xenomai)

Figure 1: Inter-subsystem information flow in the delay line control system, with the de-
lay lines operating in a standalone mode. The production delay line software will incorpo-
rate additional interfaces to the ISS and Fringe Tracker (not shown in this diagram), which
will use different communication protocols to those described in this document. Teleme-
try, status and command message flows are shown as purple arrows. Command data
streams (labelled individually) are shown in magenta. The thin black arrows represent
control signals transmitted via interfaces other than Ethernet; these signals are described
in AD1.

7

Ta
bl

e
1:

Su
m

m
ar

y
of

de
la

y
lin

e
m

es
sa

gi
ng

pr
ot

oc
ol

s.
Th

e
ta

bl
e

us
es

th
e

st
an

da
rd

id
en

ti
fie

rs
fo

r
de

la
y

lin
e

su
b-

sy
st

em
s

lis
te

d
in

Ta
bl

e
4.

N
ot

e
th

at
co

pi
es

of
co

m
m

an
d

da
ta

ar
e

tr
an

sm
it

te
d

to
th

e
W

or
ks

ta
ti

on
by

th
e

or
ig

in
at

in
g

su
b-

sy
st

em
,

as
te

le
m

et
ry

,i
n

or
de

r
to

lo
g

th
e

da
ta

.C
om

m
an

ds
ar

e
lo

gg
ed

di
re

ct
ly

by
th

e
W

or
ks

ta
ti

on
.

M
sg

.t
yp

e
So

ur
ce

D
es

ti
na

ti
on

M
sg

.R
at

e
/H

z
U

se
of

co
nt

en
t

St
at

us
T

R
LY
n

,
V

M
E,

SH
EA

R
n

,
W

or
ks

ta
ti

on
W

or
ks

ta
ti

on
10

–3
0

Sy
st

em
-l

ev
el

co
nt

ro
l,

di
sp

la
ye

d,
re

co
rd

ed
Te

le
m

et
ry

A
ll

W
or

ks
ta

ti
on

1–
10

R
ec

or
de

d
C

om
m

an
d

W
or

ks
ta

ti
on

V
M

E,
SH

EA
R
n

,T
R

LY
n

A
sy

nc
.

O
be

y
co

m
m

an
d

C
om

m
an

d
D

at
a

W
or

ks
ta

ti
on

,V
M

E,
SH

EA
R
n

V
M

E,
SH

EA
R
n

,T
R

LY
n

1–
30

C
lo

se
lo

op

8

2.1 Design Aims

The messaging protocol and its C library implementation were designed with the follow-
ing aims in mind:

• Provide the capability to record all control signals (hardware and software), for de-
bugging the prototype delay line

• Use well-defined message protocols, and document these thoroughly

• Provide a flexible messaging system, that allows e.g. adding/changing signals with
minimal knock-on effects

• Use the same protocols for the “prototype” and “production” control software so
that the prototype and production components can be used interchangably

2.2 Connection Protocol

The protocol for establishing communication between the various computers is described
in Sec. A. In brief, the Workstation acts as a server, listening for connection attempts on a
pre-arranged TCP/IP port. Each sub-system connects to the server, establishing its own
socket connection which it subsequently uses to transmit status and telemetry to the Work-
station. The Workstation uses the same connection to send commands in the opposite
direction. A separate socket connection is made for each command data stream (Sec. B.1).

2.3 Commands & Command Data

We have distinguished between commands and command data (henceforth we will refer
to command data as “data” where this is unambiguous): the former are sent from the
Workstation to the delay line sub-systems, usually asynchronously. The latter (e.g. shear
offsets) are used to close servo loops in the system. Typically command data are trans-
mitted at a fixed rate from one specific sub-system to another. The relevant servo loop is
activated or deactivated in response to commands from the Workstation to the sub-system
receiving the data; typically the data is always sent whether the system state requires it or
not.

As described below, command acknowledgements are incorporated into the status mes-
sages transmitted to the Workstation. There are no explicit acknowledgements for data
messages.

Commands and their corresponding acknowledgements are logged to the same file as
telemetry and status information (defined in the next section) — see Sec. D. Command
data are logged by sending a copy of the data from the originating sub-system to the
Workstation as telemetry.

We give more details on the protocols for transmitting commands and data in Sec. B.

9

2.4 Telemetry & Status

We define telemetry to consist of “measurements” made primarily for debugging the de-
lay lines. We treat measurements from all physical sensors in the delay line system as
potential telemetry data. Telemetry can also include values of variables within the delay
line control software.

Detailed lists of the telemetry items identified thus far are given in Sec. C.1. We envisage
that telemetry is digitised and buffered locally before being transmitted (in “chunks” at
typically one-second intervals) over the Ethernet to the Workstation, where it is buffered
prior to possible archiving, processing and display.

We define “status” to consist of information used by the control system and by the user in
controlling the delay lines. By this definition status includes:

• Information (mostly boolean) about the state of a sub-system, which typically changes
in response to commands.

• Command acknowledgments, to provide near-immediate feedback on whether each
command was accepted.

• Information about whether the delay line is performing acceptably (e.g. OPD jitter)

• Information that should be displayed in real time (e.g. trolley position)

Status messages are sent at regular intervals (every ∼0.1 s). The message format allows
these to contain arbitrary boolean and numerical status items.

Special components of each status message indicate whether any commands have been
received since the previous status message was issued, and for each such command,
whether the command and any associated parameters are valid, and whether the com-
mand will be acted on. In this way the status message incorporates command acknowl-
edgement(s). Any subsequent changes of state in response to a command will be indicated
by (regular) status messages, i.e. changes in the status items listed in Sec. C.1.

Each status message may contain multiple log/fault notifications, each comprising:

• a log/fault type specifying the category of log/fault and its level (severity),

• a bitmask specifying which of the (up to 10) delay lines the log/fault applies to, and

• a human-readable message.

In the case of faults, the first component of the message string is a name for the fault. The
log/fault types supported for status messages (see Table 9) have been chosen in order to
map straightforwardly to the types and levels for logs and faults understood by the ISS.

10

The essential distinction between telemetry and status, as defined here, is that the former
is only employed (in near-real-time or after the fact) by the user to debug the system,
whereas status information is used by the control system and interactively by the user
in controlling the delay line (and may also be used for debugging purposes). This is
the reason for requiring status information to be sent more frequently compared with
telemetry chunks.

However, status information is logged to the same file as telemetry, so that the user can
correlate the information when debugging the delay line.

In the control system architecture, status and telemetry messages are only sent to the
Workstation (see Figure 1). The Workstation contains all of the system-level intelligence
necessary to control the delay line.

Transmission of telemetry/status from different sub-systems will be staggered (use of
NTP will be sufficient to synchronise this), to avoid overloading the network.

2.5 Message Formats

Messages are encoded using the locally-written “Serialise” library , and transmitted us-
ing sockets over TCP/IP. The serialise library implements a compact yet flexible binary
representation, and is described in the serialise manual. The Serialise library (described in
RDxx) implements messages that are automatically self-describing in the sense that the re-
ceiving software can deduce the contained data types/lengths and their order/grouping
from just the message itself.

The message formats defined in the appendix add another layer of self-description which
labels each data item and provides meta-data information such as the units and timing of
the measurement.

2.6 Implementation

A C library, “dlmsg”, has been written to facilitate composing, transmitting, receiving and
decoding telemetry/status messages. This library is described in its own manual [RD2].

The dlmsg library contains code for sending and receiving all four types of message identi-
fied in this document (status, telemetry, command, and command data). Support for con-
catenated status messages (Sec. C.3.1)and concatenated telemetry messages (Sec. C.2.1) is
included.

All delay line sub-systems use the library, in order to reduce the overall development time
and make messaging more reliable. The library hides details of the message formats from
callers, so the formats can straightforwardly be modified if necessary.

The library is small (when compiled without debugging symbols, the size of the binary is
approximately 40 kilobytes), and portable. It has been fully tested on the Linux and QNX
Neutrino operating systems.

11

A Socket Initialisation Protocol

The text in this section was taken from the document “Socket Initialisation Protocol for
Delay Line Computers” by Bodie Seneta (rev 1.0).

This section describes how the computers should connect to each other so that messages
can be passed between them as required for a functioning delay line. We assume that the
reader has a basic knowledge of C programming and the concept of interprocess commu-
nication using unix ports and sockets.

A.1 Definitions

For clarity we define the following:

Source A computer program that generates delay line messages.

Sink A computer program that receives delay line messages.

Command, command data, status, telemetry All are message types as set out above.

Controller A computer program that sends commands (a “command source”). Normally
the workstation is the only controller, but if there is a test program running on an-
other computer that sends commands then it is also a controller.

Controllee A computer program that accepts commands (a “command sink”). Con-
trollers and controllees need not be running on separate computers.

Port1, port2 Unix ethernet port numbers. Port16=port2. Port1 is used for status, telemetry
and command messages. Port2 is used for command data messages. The current
de-facto standard is to use ports 5000 and 5001.

SocketA, socketB,. . . ,socketF Unix sockets, which should be created using the socketlib
library (distributed with the serialise library described in “Serialise Network Mes-
sage Protocol”).

ProgamA, programB : Two programs that communicate with each other via a socket con-
nection.

A.2 The Connection Protocol

There are actually two connection protocols. The first is for establishing connections
where commands, status and telemetry information is exchanged and the second is for
command data, which has simpler requirements. In both cases, the protocol is the same
whether the delay line network is being initialised or a connection is being restored due
to a prior fault or a deliberate disconnection.

12

A.2.1 Command, status and telemetry connection protocol

This protocol makes use of the fact that a given controllee only sends telemetry and status
information to one other program (the controller) and only expects commands to arrive
from that same program.

1. Controllers should be initialised (possibly using CreateListenPort() from sock-
etlib) so that they listen for connection attempts from anywhere on socketA using
port1.

2. Controllees should initiate a connection with a controller by creating socketB (possi-
bly by using ConnectToServer() or ConnectToServerWithTimeout()) which
is intended for transmission of status and/or telemetry messages to the controller on
port1. Controllers do not initiate such connections1.

3. When the controller notices that a connection is being attempted on port1, it creates
socketC to receive subsequent messages from the controllee on port1 and to send
any commands to it (also using port1). As port1 connection attempts arrive from
other sources, further sockets are created as necessary.

4. When the controllee notices that socketC exists (that is, its attempt to create socketB
was successful), it should start to listen for incoming commands from the controller
using socketB.

5. The connection is now established. The controllee can use socketB to send status and
telemetry information to and receive commands from the controller. The controller
can use socketC to send commands to and receive telemetry and status information
from the controllee.

A.2.2 Command data connection protocol

For command data, a command data sink can expect command data to arrive from any-
where, but it does not need to send anything back to the source.

1. Command data sinks should be initialised so that they listen for command data from
anywhere using port2 on socketD.

2. A command data source initiates communication with a command data sink by cre-
ating socketE which is intended for transmission of command data using port2.

1Rationale: Under normal circumstances the controller is an always-online workstation, while controllees
are added to or removed from the network as needs dictate. It is sensible for controllees to announce their
presence to the controller when they appear on the network – otherwise the workstation would have to
periodically poll the network to discover which controllees were currently available.

13

3. The command data sink reacts by creating socketF for reception of subsequent com-
mand data from this source on port2. As messages arrive from other sources, further
sockets are created as necessary.

4. The connection is now established. The command data sink can receive command
data on socketF. The command data source can transmit command data on socketE.

A.3 The Disconnection Protocol

In the operational delay line, it is an error condition for any program to break an estab-
lished socket connection, even when this is deliberate, and it should be reported as such.
Hence a disconnection can be handled in much the same way whether one of the parties
deliberately disconnected or there was a system failure such as a network problem. The
disconnection protocol is the same for all kinds of source and sink:

1. ProgramA ceases communication with programB by ceasing to write to and/or read
from the corresponding socket. It then destroys the socket itself.

2. ProgramB notices communication with programA has stopped. It might do this by
timing out if it was expecting data from programA, or by noticing that messages to
programA fail to be sent, or by receiving a “hangup” signal from the socket (this
might take several minutes).

3. ProgramB then stops transmitting via the socket in question and destroys that socket.
The disconnection process is now complete.

B Commands & Data

This section gives details of the command and command data protocols outlined in Sec-
tion 2.3 above.

B.1 Command/Data Lists

In the listings that follow, the types of command parameters and data values are indicated
by means of the type codes understood by the Serialise library. A key to these type codes
is given in Table 2.

14

B.1.1 Workstation to VME Metrology System

Each command applies to the trolleys specified as part of the command, by means of the
“trolley mask”. This is an integer word (transmitted as an array of unit length) where, if
bit i is set, the command applies to trolley i. If bit i is unset, the state of trolley i remains
unchanged.

Each “TrajectoryN” data message applies to the trolley N specified in the message label.

The UTC in TrajectoryN shall be an integer number of seconds. The velocities in TrajectoryN
shall be calculated by differencing the transmitted positions; they should not be the instan-
taneous velocities for the same times as the positions.

Command Parameters Type Comment
Follow Trolley mask H[1] Start OPD loop
Idle Trolley mask H[1] Stop OPD loop, zero carriage velocity
Datum Trolley mask H[1] Slew to datum, zero metrology
FringeTrackOn Trolley mask H[1] Apply FT offsets
FringeTrackOff Trolley mask H[1] Don’t apply FT offsets
ResetFTOffset Trolley mask H[1] Set total FT offset to zero
Data Label Values Type Rate Comment
TrajectoryN UTC, D[23] 1 Hz at which to realise 1st position

Time interval, between points
Position valid flag,
10×position, include intra-night offset
10×velocity

B.1.2 Workstation to Trolley Micros

Each command applies to the trolley whose micro it is sent to.

Command Parameters Type Comment
DoNothing – For testing
SteeringOn – Steering servo on
SteeringOff Steering position D[1]
TipTiltOn – Tip-tilt servo on
TipTiltOff Tip, tilt positions D[2]
FocusPos Position, timeout D[2]
FocusOffset Offset, timeout D[2]
DirectSlew Velocity D[1] To drive trolley when VME down
DirectSlewOff Velocity D[1] Drive trolley but let VME override

B.1.3 Workstation to Shear Sensors

Each command applies to the shear sensor it is sent to.

15

Command Parameters Type Comment
SetFiducial X, Y D[2] Current fiducial returned in status
LogVideoOn M H[1] Save one image in every M
LogVideoOff – Stop saving images

B.1.4 VME Metrology System to Trolley Micros

Each data message applies to the trolley whose micro it is sent to.

Data Label Values Type Rate Comment
Slew Carriage velocity D[1] 10 Hz
Track Velocity D[1] 10 Hz Velocity for feed forward
(Rate demand) Cat’s eye error signal 5 kHz Over low-latency link

B.1.5 Shear Sensor to Trolley Micro

Each data message applies to the trolley whose micro it is sent to.

Data Label Values Type Rate Comment
TipTiltOffset Tip, Tilt offsets D[2] 30 Hz Current position in telemetry

B.2 Command/Data Message Format

The message format is given in Table 3. We have assumed the use of DFB’s “Serialise”
library, to match what has been agreed for telemetry/status messages (see Sec. 2.5). The
format makes use of the fact that serialise automatically encodes the data type of each
message component, to allow the array of command parameters/data values to take the
most appropriate data type (integer or floating point) for each command.

More details on serialise may be found in the serialise manual, entitled “Serialise Network
Message Protocol”. For convenience, the serialise type codes are reproduced in Table 2.

As defined, the message format can be used for both commands and data, but distinct
identifier strings and independent message version numbers are used for the two appli-
cations.

C Telemetry & Status

This section gives details of the telemetry and status protocols outlined in Section 2.4
above.

16

Table 2: Type codes (format specifiers) supported by the serialise library. Please refer to
the serialise manual for more details.

s null-terminated string
i 32-bit integer
d 64-bit float
C array of characters
B array of 8-bit integers
H array of 16-bit integers
I array of 32-bit integers
L array of 64-bit integers (not yet implemented)
F array of 32-bit float
D array of 64-bit float
(start tuple (group)
) end tuple (group)
o pre-encoded object (serialising)/“any” object (deserialising)

Table 3: Command/data message format.

Type Item Description
(Message Start Mandatory for serialise

Identifier
s “MRO_DL” Common to all delay line messages
s “CMD”/”DATA” Identifies type of message
i Message version Incremented when command/data format

changed
Body

s Source Identifier See Table 4
i Tag Incremented by source when com-

mand/data message sent
s Command/data label e.g. “SteeringOn”, “TiptiltOffset”

H/I/L/F/D 1d parameter/value array Omitted if command takes no parameters
) Message End Mandatory for serialise

17

Table 4: Sub-system identifiers used in delay line messages.

“SYSTEMn” Workstation system controller for trolley n
“WKSTN” Workstation (not trolley-specific)
“VME” VME Metrology System
“TRLYn” Trolley n micro
“SHEARn” Shear sensor for trolley n
“FT” Fringe tracker (if applicable)

C.1 Telemetry and Status Items

The thinking behind these choices is that the status messages should contain sufficient
information for the Workstation to conclude whether any of the commands in Sec. B.1
has completed successfully. Note that the status message format only allows boolean and
64-bit floating point data types.

C.1.1 Workstation Items

The following items are transmitted over the loopback interface, so that they are logged
etc.

The Workstation opens a separate socket connection (to itself over the loopback interface)
for each trolley, hence the trolley number is not needed as a suffix to each item name.

18

Sample
Item Rate /Hz Type Comment
OpdFollow 10 Bool
OpdIdle 10 Bool
OpdDatum 10 Bool
OpdDirectSlew 10 Bool
PosEndLimit 10 Bool
NegEndLimit 10 Bool
Track 10 Bool
TrackInSpec 10 Bool Track and Error, Jitter in spec
FTrackOn 10 Bool
FocusOn 10 Bool
SteeringOn 10 Bool
TipTiltOn 10 Bool
FollowCurrent 10 Bool Current trajectory in force
Pos 10 Float64 from VME
Error 10 Float64 from VME
Jitter 10 Float64 from VME
FTOffset 10 Float64 from VME
MotorVel 10 Float64 from trolley
CoarsePos 10 Float64 from trolley
FocusPos 10 Float64 from trolley
Roll 10 Float64 from trolley
SteeringPos 10 Float64 from trolley
ShearSigX 10 Float64 from shearcam
ShearSigY 10 Float64 from shearcam
TipTiltXPos 10 Float64 from shearcam
TipTiltYPos 10 Float64 from shearcam
HourAngleNow 10 Float64 Transmitted earlier
PosDemNow 10 Float64
VelDemNow 10 Float64
IntraNightOffset 10 Float64

Telemetry
PosDem 10 Float64 Position demand
VelDem 10 Float64 Velocity demand
IntraNightOffset 10 Float64
TxUtc 1 Float64 Transmission time
HourAngle 1 Float64 For sidereal trajectory

19

C.1.2 VME Metrology Items

Since the VME system deals with all trolleys, there are equivalent status and telemetry
items for each trolley. In the list below, N stands for the number of the relevant trolley;
status and telemetry for all trolleys are sent over a single socket connection.

Sample
Item Rate /Hz Type Comment

Status
IdleN 10 Bool i.e. obeying ‘Follow off’
TrackN 10 Bool False if slewing
DatumSeekN 10 Bool True until metrology zeroed
DatumFoundN 10 Bool Set after successful datum seek
FTrackN 10 Bool True if applying o/s from Fringe Tracker
MetPcbHotN 10 Bool True if Agilent board is overheating
MetSignalBN 10 Bool Agilent “B” signal is present
MetSignalAN 10 Bool Agilent “A” signal is present
MetErrorN 10 Bool True if any Agilent board error flags set
MetSamplingN 10 Bool Hardware sample pending
MetInterpResetN 10 Bool Interpolator reset line status
MetInterpUnlockN 10 Bool Interpolator has lost lock
MetOverflowN 10 Bool Hardware position counter overflowed
MetGlitchN 10 Bool Out-of-bounds acceleration detected
MetNegVbN 10 Bool No transitions within 12.8µs on “B” input
MetPosVbN 10 Bool Two transitions within 26.7ns on “B” input
MetNegVaN 10 Bool No transitions within 12.8µs on “A” input
MetPosVaN 10 Bool Two transitions within 26.7ns on “A” input
PosN 10 Float64 Instantaneous metrology value
ErrorN 10 Float64 Mean OPD error over 0.1s window
JitterN 10 Float64 Peak-to-peak OPD error over 0.1s window
MetStateN 10 Metrology state XXX define for Agilent/Zygo
FTOffsetN 10 Float64 Total FT offset
DatumPosN 10 Float64 Metrology just prior to reset at datum

Telemetry
InterpPosN 5000 Float64 Interpolated Workstation PosDem
MetrologyN 5000 Float64 Metrology position
MetrolErrorN 5000 Float64 Position error
RateDemN 5000 Float64 Cat’s-eye error signal as transmitted /volt
VelDemN 10 Float64 Carriage demand velocity
FTIncrN <200 Float64 Incremental FT offset

20

C.1.3 Trolley Micro Items

Sample
Item Rate /Hz Type Comment

Status
SteeringOn 10 Bool
TipTiltOn 10 Bool
FocusOn 10 Bool
Idle 10 Bool
Track 10 Bool
DirectSlew 10 Bool Obeying slew override from workstation
PosEndLimit 10 Bool In positive limit
NegEndLimit 10 Bool In negative limit
VelDem 10 Float64 Demand velocity (currently MotorVel)
SteeringPos 10 Float64
Roll 10 Float64
TiptiltXPos 10 Float64
TiptiltYPos 10 Float64
FocusPos 10 Float64
Temp 10 Float64 Roving temperature
CoarsePos 10 Float64 Odometer reading
DiffPos 10 Float64 Differential position sensor

Telemetry
CoilDrive 5000 Float32 Cat’s-eye drive current
DiffPos 5000 Float32 Differential position
DiffVel 5000 Float32 Differential velocity
Loop1 5000 Float32 Output volts from RF link
Loop2 5000 Float32 Output volts from metrology loop-shaping stage of pre-amp
SteeringDem 10 Float32 Steering demand
MotorVel 100 Float32 Motor velocity
MotorDemI 100 Float32 Motor demand current
MotorI 100 Float32 Motor current
MotorPos 100 Float32 Motor position
CatsAccelX 5000 Float32 Cat’s-eye acceleration in X
CatsAccelY 5000 Float32 Cat’s-eye acceleration in Y
CarrAccelX 5000 Float32 Carriage acceleration in X
CarrAccelY 5000 Float32 Carriage acceleration in Y
VPri 100 Float32 Primary supply voltage
V+5 10 Float32 “+5V” actual voltage
V-5 10 Float32 “-5V” actual voltage
V+12 10 Float32 “+12V” actual voltage
V-12 10 Float32 “-12V” actual voltage

Continued on next page

21

Sample
Item Rate /Hz Type Comment
VStore 10 Float32 Onboard storage voltage
TFocus 10 Float32 Focus stage temp.
TPriCell 10 Float32 Primary mirror cell temp.
TCarrF 10 Float32 Carriage front temp.
TCarrR 10 Float32 Carriage rear temp.
RfSig 10 Float32 Low latency link signal strength

XXX power usage?

XXX Loop3 etc.?

C.1.4 Shear Sensor Items

Sample
Item Rate /Hz Type Comment

Status
FiducialX 30 Float64
FiducialY 30 Float64
ShearSigX 30 Float64 w.r.t. fiducial
ShearSigY 30 Float64 w.r.t. fiducial
XValid 30 Bool
YValid 30 Bool
LoggingOn 30 Bool Shear logging on

Telemetry
ShearX 30 Float32 w.r.t. fiducial
ShearY 30 Float32 w.r.t. fiducial
ConfidenceX 30 Float32
ConfidenceY 30 Float32

C.2 Telemetry and Status Protocols

We refer to the Workstation as the “server”, with the VME Metrology CPU, trolley micros,
and shear sensor computers as “clients”. The server-side software allows any number of
clients to connect.

Clients send “chunks” of telemetry at 1 Hz (or faster if this is more convenient), and status
messages at 10 Hz (or faster). Each telemetry chunk may contain many data samples.
Multiple chunks of telemetry (each containing a different signal) may be concatenated
into a single message.

Each status message contains a heterogeneous set of numerical and boolean values. In the
simplest variation of the message format, these have a common timestamp. However, it is

22

permissible to concatenate several status units (each of which can contain multiple items)
in a single message, each unit having an independent timestamp.

Messages are transmitted from client to server over a TCP/IP socket connection. The
server listens on a pre-arranged TCP/IP port, and can accept connections from multiple
clients to that port.

In the current implementation, when recording is active the server logs all telemetry and
status received to a single file on disk. The log file format is described in Sec. D.

C.2.1 Telemetry Format Details

Each telemetry message contains separate identifier, header and data components. The
identifier identifies the category (telemetry or status) and version of the message. The in-
tention is that all delay line network messages have equivalent identifiers, encoded using
serialise. The header contains sufficient information to allow decoding and interpretation
of the data part that follows.

The format of a telemetry message is enumerated in Table 6. A key to the type codes may
be found in Table 2.

For chunks of length 5000 samples, the “sample index” for consecutive chunks would
be 0, 5000, 10000, . . . This allows missing data to be identified. The sample index would
normally be reset whenever the stream is reconfigured.

Heterogeneous telemetry information may be combined in a single message by joining
multiple header/data units onto the identifier. In other words, given that the basic mes-
sage enumerated in Table 6 has the format (I(H)D) (where I stands for the identifier, H
for the header items and D for the data part), a concatenated message is constructed as
(I(H)D(H)D. . .). Header/data units may appear in any order.

C.3 Extension to telemetry message format for shear camera video

A proposed modification of the telemetry message format that allows time-series of im-
ages to be transmitted to the Workstation is shown in Table 7.

The data array that follows the header and optional metadata can be any valid FITS image
array, with any number of dimensions (though typically one – TIME – or 3 – X, Y, TIME), in
column-major storage order w.r.t. the dimensions in the message header. The last (slowest)
dimension is assumed to be the time dimension.

Colour images (which are not needed for the current monochrome shear cameras) could
be transmitted as 4d arrays (X, Y, RGB, TIME).

The key-value metadata need only be transmitted in the first message in a sequence (with
the same ConfigId).

23

Table 6: Current telemetry message format. Further header/data units may be added to
the end of the message, as described in the text.

Type Item Description
(Message Start Mandatory for serialise

Identifier
s “MRO_DL” Common to all delay line messages
s “TELE” Identifies type of message
i Message version Incremented when this format changed

Header
(Header Start
s Client Identifier See Table 4
i Client ConfigId Incremented when client’s set of streams

changed or stream(s) reconfigured
i Secondary Client Identifier Synchronous streams share same value
i Time offset /µs Relative offset from other streams with same

secondary client identifier
s Stream Identifier Label, e.g. “Rel_pos”
i Nominal sample rate /Hz
i No. of samples in chunk Not req’d to decode
s Type code for data “H”/“I”/“L”/“F”/“D”. Not req’d to decode
s Units e.g. “mm”
i Sample index Index of chunk’s 1st sample (see below)
d UTC of chunk’s 1st sample In Unix Time. “Time offset” is included.
) Header End

Data
H/I/F/D 1d data array Samples in time order

) Message End Mandatory for serialise

The metadata will be decoded, buffered, and written verbatim to the relevant HDU of FITS
logfiles. This section of the message would generally be omitted for non-image telemetry,
and for image telemetry would contain keywords conforming to the WCS FITS conven-
tions that specify the world coordinates of the image pixels (for shear camera images this
could be shear in X and Y with respect to the current fiducial, as a function of time). The
display orientation should follow the FITS convention i.e. the image pixel (1,1) is dis-
played in the lower left corner, the X coordinate increases to the right in the image, and
the Y coordinate increases in the upward direction.

24

Table 7: Proposed new version of telemetry message format that can be used to transmit
image telemetry. Differences from the current format are highlighted. As with the current
message format, further header/data units may be added to the end of the message as
described in the text.

Type Item Description
(Message Start Mandatory for serialise

Identifier
s “MRO_DL” Common to all delay line messages
s “TELE” Identifies type of message
i Message version Incremented when this format changed

Header
(Header Start
s Client Identifier See Table 4
i Client ConfigId Incremented when client’s set of streams

changed or stream(s) reconfigured
i Secondary Client Identifier Synchronous streams share same value
i Time offset /µs Relative offset from other streams with same

secondary client identifier
s Stream Identifier Label, e.g. “Rel_pos”
i Nominal sample/frame rate /Hz
I Chunk array dimensions See text
s Type code for data “H”/“I”/“L”/“F”/“D”. Not req’d to decode
s Units
i Sample/frame index Index of chunk’s 1st sample (see below)
d UTC of chunk’s 1st sample/frame In Unix Time. “Time offset” is included.
) Header End

Optional Metadata
(Metadata Start

ss Keyword, Value
. . .
) Metadata End

Data
H/I/F/D 1d data array See text

) Message End Mandatory for serialise

25

C.3.1 Status Format Details

Each status message contains separate identifier, command acknowledgement, header
and data components. The format of a status message is enumerated in Table 8.

Each message incorporates a structure for zero, one or more command acknowledge-
ments, containing the following items:

• No. of commands received since previous status sent [Int]

For each command received, in order of receipt, the following items:

• Source of command [string]

• Command Tag (incremented at source each time any command sent) [Int]

• Parse flags [Boolean values encoded as Byte array]:

– Command understood

– Parameters in range (TRUE if no parameters)

– Command will be (or has been) obeyed

If there are no numeric (boolean) status items, the NumLabel and NumUnits (BoolLabel)
component(s) shall be an empty tuple (), and the NumVal (BoolVal) component shall be
omitted (I am presuming serialise does not allow a zero-length array).

Multiple status units, each with an independent timestamp, may be concatenated to form
a single message. Given that the basic message enumerated in Table 8 has the format
(IA(H)D) (where I stands for the identifier, A for the command acknowledgements, H
for the header items and D for the data part), a concatenated message is constructed as
(IA(H)D(H)D. . .). Header/data units should appear in time order.

D Log File Format

The prototype and production versions of the workstation software have the capability to
record telemetry and status information, outgoing commands and log/fault messages to
disk files.

The format used for standalone recording is based on FITS binary tables, as Matlab has a
built-in capability to read these (they can also be read into C, Python and IDL programs
using third-party libraries), and the Cambridge team has relevant experience of writing
FITS from C.

26

Table 8: Status message format. Further header/data units may be added to the end of
the message, as described in the text.

Type Item Description
(Message Start Mandatory for serialise

Identifier
s “MRO_DL” Common to all delay line messages
s “STAT” Identifies type of message
i Message version Incremented when this format changed

Acknowledgements
i No. commands received since previous status sent

For each command received:
(Acknowledgement start
s Source of last command
i Command Tag Incremented at source when command sent

B[3] Parse flags See text
) Acknowledgement end

...
Header

(Header Start
s Client Identifier See Table 4
i Client ConfigId Incremented when set of status sent by client

changes
i No. log/faults to follow

For each log/fault:
(Log/fault start
i Log/fault type See Table 9
i Trolley mask Same meaning as in commands
s Human-readable message For faults, starts with fault name followed by

colon
) Log/fault end

...
(NBool×s) BoolLabel Labels for boolean status items, encoded as

tuple of strings
(NNum×s) NumLabel Labels for numeric status items, encoded as

tuple of strings
(NNum×s) NumUnits Units for numeric status items, encoded as

tuple of strings
d UTC timestamp for status In Unix Time
) Header End

Data
B[NBool] BoolVal Boolean status items, encoded as Int8 array
D[NNum] NumVal Numeric status items, encoded as Float64 ar-

ray
) Message End Mandatory for serialise

27

Table 9: Log/fault type codes used in status messages.

Maps to MROI Maps to MROI
Value Enumeration LogType LogLevel Comment

1 DL_LOG_VERBOSE INFO FINER
2 DL_LOG_DEBUG INFO FINE
3 DL_LOG_CONFIG INFO CONFIG related to configu-

ration, especially at
startup

4 DL_LOG_INFO INFO INFO
5 DL_LOG_FAULT FAULT WARNING
6 DL_LOG_SEVERE_FAULT FAULT SEVERE

D.1 FITS Primer

FITS binary tables are part of the core FITS standard (which is in widespread use in as-
tronomy), and provide a framework (meta-format) for storing heterogeneous data in a
compact binary form. The latest version of the FITS standard is version 2.1b.

FITS files consist of any number of header/data units (HDUs), each of which represents
an image, binary table, or ASCII table, together with associated metadata. Headers are
always encoded in ASCII, and contain a set of keywords and associated values. Certain
keywords have special meanings according to the FITS standard (for example they de-
scribe the structure of the data part of the HDU), but other application-specific keywords
can be included. For historical reasons, the first HDU can only contain an image (which
can be of zero size).

D.2 Structure of Telemetry/Status/Logs FITS File

Telemetry, status, command logs and log/fault messages (for all trolleys) are saved to
the same file. A FITS log file as defined in this document may contain any number of
DL_TELEMETRY (Sec. D.4), and DL_STATUS (Sec. D.5) tables, plus one DL_CMD table
(Sec. D.6) and one DL_LOG table (Sec. D.7. Generally the tables appear in time order (with
typically several tables of each type for the same time interval), with groups of status and
telemetry tables interleaved, but any table ordering is valid.

Typically command logs and log/fault messages (perhaps filtered) are always recorded,
whereas recording of status and telemetry — which has a higher data-rate — is activated
by the user for a pre-set period (several tens or hundreds of seconds).

The table formats are not designed to accommodate changes in the set of telemetry/status
items sent by a client during a recording. Clients should not do this anyway!

28

In the sections that follow, serialise typecodes (Table 2) are used to indicate the data types
of keyword values/columns (FITS defines its own, different, typecodes).

D.3 Primary Header

The primary header (header of the first HDU) of the file contains no application-specific
keywords, and no mandatory keywords that it would be useful to read.

D.4 DL_TELEMETRY Table

A FITS log file as defined in this document may contain any number of DL_TELEMETRY
tables. The telemetry streams in each table are those that are time-synchronised with each
other (as indicated by the secondary client identifiers and time offsets in the telemetry
messages), and thus there will be at least one table per active client for each time interval.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of table data as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss
TTYPEn s Name of column (field) n (=stream identifier or “UTC”)
TUNITn s Units for column n

Other Keywords

Keyword Type Value
TBL_VER s Version number of table definition
CLID s Client identifier for streams in this table
SEC_CLID i Secondary client identifier for streams in this table
REFSTRM i Number of column containing reference stream data
SMPRATEn i Nominal sample rate for column n /Hz
TIMOFFn i Time offset from reference stream for column n /µs
DATE-NOM s Start UTC of recording as yyyy-mm-ddThh:mm:ss[.sss]
UTC-NOM d Start UTC of recording as Unix Time

Columns

Each table “cell” shall contain a one-dimensional array of telemetry samples. The array
lengths for different columns are chosen such that the data in each row of the table spans

29

the same time interval for all columns. The data type of each column shall match that
used in the telemetry messages for that stream.

A single column (of double precision type) with TTYPE=”UTC” contains periodic times-
tamps: each cell in this column contains an array (perhaps of length 1) giving the UTC
timestamps (in Unix Time, i.e. seconds since midnight Jan 1, 1970) for the so-called ref-
erence stream. One such timestamp comes from each telemetry network message. The
column containing the data for the reference stream is identified by the REFSTRM key-
word, and will be the most rapidly-sampled stream in the table. If several streams have
equal-fastest sampling, one will be chosen arbitrarily as the reference stream to which the
timestamps apply.

The table is normally structured such that each row corresponds to a single chunk of
telemetry for the reference stream. For two synchronised streams A and B with sample
rates of 5 kHz and 10 Hz respectively, the table might be arranged as follows (where (. . .)
represents a single cell):

(1×UTC) (5000×A) (10×B)
(1×UTC) (5000×A) (10×B)
(1×UTC) (5000×A) (10×B)
etc.

Note that prior to April 2008, the workstation software wrote DL_TELEMETRY tables
which did not fully conform to the above definition. Rather than write a client’s telemetry
streams to several DL_TELEMETRY tables, grouped by synchronicity (i.e. SEC_CLID), all
streams were written to a single table. Hence the TIMOFFn values were not necessarily
meaningful.

D.5 DL_STATUS Table

A FITS log file may contain any number of DL_STATUS tables, perhaps with different
timespans. The status items from different clients shall be stored in separate tables. Both
boolean and numeric values (from the same client) are stored in each table.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of measurement as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss
TTYPEn s Name of column (field) n (=status item label or “UTC”)
TUNITn s Units for column n

30

Other Keywords

Keyword Type Value
TBL_VER s Version number of table definition
CLID s Client identifier for status items in this table
DATE-NOM s Start UTC of recording as yyyy-mm-ddThh:mm:ss[.sss]
UTC-NOM d Start UTC of recording as Unix Time

Columns

The table shall have columns of FITS logical type with a single boolean status value per
table cell, and columns of double precision type with a single numeric status value per
table cell. The timestamps (Unix Time) for the status information are contained in a single
double precision column with TTYPEn of “UTC”.

If a client packages its status items for each interval in more than one message unit (in
order to encode the epochs of measurement more precisely), there will be one FITS row per
unit, and some of the values in the table will be NULL, encoded as per the FITS standard
(zero-valued byte for logical columns, IEEE NULL for double precision columns).

Log/fault messages are written to a separate FITS table (Sec. D.7).

Command acknowledgements are stored in the columns listed below. If the number of ac-
knowledgements in a status message exceeds the number of status units in the message,
an extra table row shall be included for each further command. Besides the acknowledge-
ment columns, other columns in these rows should contain the same values (including
timestamp) repeated.

Column Type Value
ICMD i Index of command in interval since last status message
CMDSRC s Source of command
CMDTAG i Command tag
PFLAGS FITS logical[3] Parse flags

D.6 DL_CMD Table

This table is used to log commands sent by the Workstation only.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of log as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss
BLANK i Code for NULL in integer arrays

31

Other Keywords

Keyword Type Value
TBL_VER s Version number of table definition
CMDSRC s

Columns

Column Type Value
UTC d Timestamp (Unix Time)
DEST s Destination for command
CMDTAG i Command tag
CMD s Command label
IPAR I[n] Integer parameter values
FPAR D[m] Floating point parameter values

The dimensions n and m of the parameter arrays should be chosen to be sufficient for
all possible commands. Array cells that are superfluous for a particular command shall
contain NULL values encoded as per the FITS standard (for IPAR the value of BLANK in
the header, for FPAR the IEEE NULL value).

D.7 DL_LOG Table

This table is used to record human-readable log and fault messages. These may be re-
ceived from clients in status messages or generated within the workstation software.

Keywords defined by the FITS Standard

Keyword Type Value
DATE-OBS s Start UTC of messages as yyyy-mm-ddThh:mm:ss[.sss]
DATE s UTC when file written as yyyy-mm-ddThh:mm:ss

Other Keywords

Keyword Type Value
TBL_VER s Version number of table definition

32

Columns

Column Type Value
UTC d Timestamp (Unix Time)
CLID s Source of message
TYPE s Category of log/fault message (see Table 9)
TRLYMASK FITS logical[10] T for affected delay lines
TIME-OBS s UTC timestamp as hh:mm:ss[.sss]
MESSAGE s Human-readable message. For FAULT and SEVERE

FAULT types, the message begins with the fault name
followed by a colon.

33

	Introduction
	Control System Information Flow
	Design Aims
	Connection Protocol
	Commands & Command Data
	Telemetry & Status
	Message Formats
	Implementation

	Socket Initialisation Protocol
	Definitions
	The Connection Protocol
	Command, status and telemetry connection protocol
	Command data connection protocol

	The Disconnection Protocol

	Commands & Data
	Command/Data Lists
	Workstation to VME Metrology System
	Workstation to Trolley Micros
	Workstation to Shear Sensors
	VME Metrology System to Trolley Micros
	Shear Sensor to Trolley Micro

	Command/Data Message Format

	Telemetry & Status
	Telemetry and Status Items
	Workstation Items
	VME Metrology Items
	Trolley Micro Items
	Shear Sensor Items

	Telemetry and Status Protocols
	Telemetry Format Details

	Extension to telemetry message format for shear camera video
	Status Format Details

	Log File Format
	FITS Primer
	Structure of Telemetry/Status/Logs FITS File
	Primary Header
	DL_TELEMETRY Table
	DL_STATUS Table
	DL_CMD Table
	DL_LOG Table

