
MRO Delay Line

Workstation Software Functional Description

INT-406-VEN-0103

The Cambridge Delay Line Team

rev 1.3
21 January 2010

Cavendish Laboratory
Madingley Road

Cambridge CB3 0HE
UK

Change Record

Revision Date Authors Changes
0.1 2007-07-05 JSY Initial version
0.2 2007-07-09 JSY Input from EBS
0.3 2007-07-10 JSY Added note about system modes
1.1 2008-01-14 JSY Revised for dual-threaded implementation
1.2 2010-01-12 JSY Changed to reflect alterations to prototype

software since FDR
1.3 2010-01-21 JSY Modified diagram to show software compo-

nents for more than one delay line

Objective

To describe the design and implementation of the workstation software.

Scope of this document

This document forms part of the documentation for the delay line Final Design Review. It
describes the design and implementation of the workstation software.

The overall architecture of the control software system is described in “Control Software
Architecture”. The workstation software acts as a supervisor for other delay line sub-
systems, the software for which is described in separate documents:

• Trolley Software Functional Description

• VME Software Functional Description

• Shear Camera Software Functional Description

1

Contents

1 Introduction 3

1.1 Development and Execution Environment . 3

1.2 Workstation Application Architecture . 4

2 User Interface 5

2.1 DGOpdGui: Workstation Graphical User Interface Class 7

2.2 DGSystemGui: System control graphical user interface class 9

2.3 DGStatusDisplay: Status display widget class 9

2.4 ClientDisplay: single-client status display class 9

2.5 DGTermUi: Terminal User Interface Class . 11

3 Telemetry Server 11

3.1 Telemetry/Status/Command Logging . 12

4 Connection Manager 13

5 System-level Application Programming Interface 13

5.1 DGSystem: Delay Line System Class . 14

5.2 State Machine . 15

6 Trajectory Calculator 16

2

1 Introduction

The workstation software provides several distinct functions:

• Provides a user interface for control of each delay line, including:

– System-level controls

– Selected subsystem-level controls

– Live display of status information

• Transmits a trajectory demand (position and velocity as a function of time) for each
delay line

• Receives, buffers, and optionally logs status and telemetry information received
from other sub-systems over the Ethernet

A separate software package is used for off-line processing and analysis of recorded teleme-
try. This analysis software is not described any further in this document.

1.1 Development and Execution Environment

The workstation software makes extensive use of GLib – the low-level core library that
forms the basis of GTK+ and GNOME. GLib provides abstract data types such as hash
tables and linked lists, as well as an event handling system (the use of which is described
in the next section) and an object system.

The GLib Object System (GObject for short) is a framework for object-oriented program-
ming in C. The object system supports inheritance, object “properties” (a generic interface
for setting/getting object attributes) and a flexible inter-object messaging system. The
messaging system works by means of “signals” (nothing to do with Unix signals). A class
may define any number of signals, which are emitted on particular instances of the class.
Any number of response functions (signal handlers) may be defined, perhaps within other
objects – these are invoked by GLib on signal emission.

The workstation graphical user interface is implemented using the GTK+ graphical user
interface toolkit, which makes extensive use of the GLib Object System and its signal
mechanism.

The workstation code uses two different styles of object-oriented programming. In the
first style, objects are implemented as dynamically-allocated C structs returned by a con-
structor function. Various method functions take a pointer to the struct as the first argu-
ment. The alternative style uses the GLib Object System (we have assigned names with
a “DG” prefix to classes implemented in this style). The latter allows GLib signals to be

3

used, but results in somewhat less readable code. Hence we have restricted use of the
second style to high-level objects which must handle a number of events.

The workstation computer used to test the prototype delay line is a standard Dell Optiplex
GX620 PC with a 3.4GHz Pentium 4 processor, 1 Gigabyte of RAM, and a 250-Gigabyte
capacity hard disk.

The workstation clock is kept synchronised with those of the other computers in the delay
line system using the NTP protocol.

1.2 Workstation Application Architecture

The functionality outlined above is provided by an event-driven application program run-
ning on the workstation computer.

Two alternative versions of this application have been written:

OpdGui System-level Graphical User Interface (GUI); intended for high-level control

Test Controller Text-based interface; intended for subsystem-level control as a develop-
ment aid

Both applications have the same basic architecture, which we now describe.

The event-driven framework is provided by GLib: when the application is started a num-
ber of objects are instantiated (coded in either style), each of which registers one or more
event sources (such as input/output watches) within a single instance of the GLib Main
Event Loop. The program then enters the main event loop, which runs until the user quits
the program.

The OpdGui application reads and parses an ASCII configuration file prior to instantiating
the objects and starting the main loop. This configuration file contains a small number
of configuration parameters formatted as “[key]=[value]”, organised into several named
sections.

There are two exceptions to this:

• the trajectory calculator object (Sec. 6), runs its own Main Event Loop instance in
a secondary thread. The only event source associated with this main loop is the
periodic task used to transmit trajectory demands to the VME system;

• Cleaning up after the user aborts a logging operation is performed in a separate
thread, as this would otherwise block the handling of other events for several sec-
onds in the worst case.

Possible event sources are:

4

1. Input/output watches: events triggered by activity on an open file, pipe or socket

2. Timeouts: periodic events

3. GLib signals, emitted on the application’s component GObject-based objects

4. Idle functions, which run when no higher-priority event is pending

Of these event sources, GLib signals have the unique feature that any number of response
functions (signal handlers) may be registered for a particular event (signal). Thus an event
triggered by a component object may result in (different) responses from several other
objects.

As C has no built-in exception-handling system, programmer and user errors are han-
dled using a locally-written exception library, which is described in the document “An
exception-handling system for C software”. As in most exception-handling systems, the
library allows the detection of errors anywhere in the code and for this error to propagate
back through the function-call hierarchy to an appropriate level for handling the error.
All the information about a thrown exception is stored in a variable, conventionally called
status, which is passed as the last parameter of any function call (in most cases). This
variable is a pointer to a structure which contains multiple items of information about the
exception, including an error message.

In the case of exceptions thrown during the processing of an event, these are propagated
back up to the top-level event handler function that was invoked by the main event loop.
If the event handler is part of the user interface code it directly calls a method to report the
exception to the user. Other handlers emit a GLib signal provided by the telemetry server
(Sec. 3) which invokes a handler within the user interface code. This handler reports the
exception to the user. The main event loop is then resumed.

The application component objects, together with their event sources and event handlers
are described in the following sections. The application architecture is shown diagram-
matically in Figure 1.

The initial objects created are the User Interface (Sec. 2), Telemetry Server (Sec. 3), and
Connection Manager (Sec. 4, OpdGui only). Further objects are created and destroyed in
response to sub-systems connecting and disconnecting (according to the connection/disconnection
protocols described in “Control Software Architecture”).

2 User Interface

Two different user interfaces have been implemented. The System-level GUI has a graph-
ical user interface implemented using GTK+, whereas the Test Controller has a text-based
interface implemented using the Ncurses library. Both interfaces provide user logging
controls (which activate the logging functions provided by the Telemetry Server – see

5

Socket

Socket Socket

Socket

Socket

Socket
Connection

Manager

Key:
Signals
Function calls
Commands
Command Data
Status
Telemetry

Create
Destroy

Logging C
ontrol: dg_eserver _xxx()

st
at

re
cv

,
di

sc
on

ne
ct

System2
Object

State
Machine

Trajectory
Calculator 2

TrajectoryXXX()

Trolley 1

Trolley 2 Shear 2

VME Metrology

Workstation Application

System1
Object

Trajectory
Calculator 1

State
Machine

Telemetry Server

Shear 1

User
Interface

st
at

re
cv

,
di

sc
on

ne
ct

systemup,
systemdown

API: dg_system_xxx()

Figure 1: Diagram of workstation application architecture, showing the component ob-
jects and the communication links between them, when operating two delay lines. The
solid arrows denote TCP/IP network messages, and the dashed arrows intra-application
information flows. For clarity, the dashed arrows associated with one of the delay lines
have been omitted.

6

Sec. 3.1) and a real-time display of the status items received from each connected sub-
system.

The two interfaces provide different functionality for controlling the delay line. The Test
Controller allows the user to type in commands defined by the messaging protocol, which
are transmitted to a user-selected sub-system. OpdGui provides graphical controls (but-
tons and entry fields) for system-level control of delay lines. Each set of these controls
(responsible for a single delay line) is created and destroyed in response to GLib signals
from the Connection Manager (Sec. 4).

The implementation of OpdGui defines handlers for button click signals which call func-
tions from the system-level Application Programming Interface (API) described in Sec. 5.

The user interfaces are implemented using the GObject-derived classes described in the
following sections.

2.1 DGOpdGui: Workstation Graphical User Interface Class

This class implements the graphical user interface for system-level control of multiple de-
lay lines, as well as providing controls for recording of telemetry, status, and shear camera
video. The class also displays log/fault messages (above a user-specified verbosity level)
that are generated within the workstation software (using the GLib message logging API)
or received from delay line sub-systems. The displayed log/fault messages are logged to
the same FITS file used to record status and telemetry.

The class provides the main application window (see Figure 2), which has logging controls
plus a message display at the bottom and a GtkNotebook widget at the top. The notebook
acts as a container for multiple pages of widgets, any one of which may be selected for
display by the user. The notebook is exported as an object property so that other objects
may add pages – DGStatusDisplay displays its widgets by this mechanism.

When the Connection Manager signals that a delay line system has come up, a user in-
terface for controlling that delay line is created by instantiating a DGSystemGui object.
The DGSystemGui’s widgets are displayed on a new notebook page (the instance and its
widgets will be destroyed when the Connection Manager signals that the delay line is
down).

DGOpdGui provides controls to start and stop logging to FITS files. DGSystemGui pro-
vides a checkbutton for selecting whether shear camera video should be recorded contem-
poraneously with status and telemetry logging for that delay line. If the button is checked,
DGOpdGui commands the relevant shear sensor to start recording when logging is initi-
ated by the user.

The GTK+ widget layouts used by DGOpdGui and DGSystemGui are stored in XML files
generated by the Glade interface design software, and realised using libglade.

7

Figure 2: Screenshot of the system-level GUI application OpdGui, showing the system
control interface.

8

2.2 DGSystemGui: System control graphical user interface class

This class provides a graphical user interface for control of a single delay line. The in-
terface incorporates logical groupings of action buttons as well as widgets for displaying
system status items. These widgets are packed into a frame widget, which is exposed as
an object property so that it can be displayed by the code that instantiates DGSystemGui.

DGSystemGui defines handlers for GTK+ button click signals which call functions from
the system-level API (Sec. 5). User requests which are not permitted in the current delay
line state are filtered out by the state machines embedded within the API, rather than by
the GUI.

The system status display is implemented using ClientDisplay (see below) and uses a
pre-defined set of display widgets that are loaded using libglade.

2.3 DGStatusDisplay: Status display widget class

This class implements a graphical display of all status items, grouped by sub-system.

The status items from each connection to the telemetry server are displayed on a separate
page of the notebook provided by DGOpdGui (see Figure 3). The status display object re-
sponds to signals from the Connection Manager in order to automatically add and remove
pages as clients connect and disconnect to/from the server.

The widget layouts are generated automatically using ClientDisplay (see next section)
when clients connect, so that the displayed widgets are always consistent with the status
items contained in the network messages. Thus clients can be modified to add new status
items, and these status items will be displayed without any changes to the workstation
software.

2.4 ClientDisplay: single-client status display class

This class is used by DGStatusDisplay and DGSystemGui to optionally create and to up-
date the widgets used to display status from a single delay line subsystem.

A ClientDisplay instance can either create its own widgets or use existing widgets from
a libglade widget tree (depending on which constructor is called). In the latter case the
widgets must follow a particular naming convention so that the constructor can find the
appropriate widget to associate with each status item.

The class provides a method to update the widgets to display a new set of status values.

9

Figure 3: Screenshot of the system-level GUI application OpdGui, showing a sub-system
status display.

10

2.5 DGTermUi: Terminal User Interface Class

This class implements the text-based user interface for subsystem-level control as well as
providing a user interface for the logging functionality provided by the Telemetry Server.

Keypress events are detected by a GLib timeout function which polls the Ncurses key-
board handler at 50 ms intervals.

3 Telemetry Server

Buffering and logging of status and telemetry messages (see “Control Software Architec-
ture”) received from other delay line sub-systems is handled by a telemetry server object
embedded within the application.

Once initialized, the server listens at a pre-arranged TCP/IP port for connection attempts
from remote clients. Any number of clients may connect, disconnect, and reconnect as
necessary. Once a client has connected, status and telemetry data received from the client
are stored in a client-specific set of circular buffers (normally sized to store 100 seconds of
data). The server expects a single sequence of status messages (i.e. messages containing
the same set of data items) and a single sequence of telemetry messages from each client,
and will throw an exception if this is violated. However, messages originating from sev-
eral clients may arrive on the same socket — this is to allow receipt of messages forwarded
from the workstation to another application which also embeds an instance of the teleme-
try server (we anticipate that this functionality will be used in the production software).
When logging (see Sec. 3.1) is activated, data is retrieved from the buffers and written to
a disk file.

The connection protocol and message formats supported by the server are described in
detail in the document “Control Software Architecture”. Note that TCP/IP socket con-
nections can be made over the “loopback” interface from a computer to itself. This mech-
anism is used to send system status from each system object (Sec. 5.1) and status and
telemetry from the Trajectory Calculator (Sec. 6) to the server.

Two alternative interfaces between the embedding application and the server have been
implemented:

EServer Embeddable Telemetry Server "class" - uses hook (callback) functions for notifi-
cation of server events

DGEServer GObject-based embeddable Telemetry Server class - uses GLib signals for
notification of server events (implemented as a thin wrapper around EServer)

The latter interface is used in the workstation application programs. Both interfaces allow
the embedding application to:

11

• Be notified of client connection and disconnection events

• Be notified of message arrival events

• Be notified of exceptions thrown in telemetry server event handlers

• Query which clients are connected

• Activate and deactivate logging to the current FITS file

• Close the current FITS file and open another

• Log a command to the current FITS file

• Retrieve the latest status information from a client

• Access the socket for a client (e.g. to send commands)

• Close the connection to a specified client

• Destroy the server, which breaks the connections to any connected clients

The exception signal can also be used by the code that embeds the telemetry server as a
general-purpose means of propagating exceptions that occur in event handlers.

Note that the server does not provide a mechanism for remote clients to retrieve status or
telemetry data – this feature is not required for the chosen control software architecture.

3.1 Telemetry/Status/Command Logging

Two flavours of logging have been implemented:

A Posteriori Logging Log previous N seconds (N specified by user), while continuing to
buffer incoming telemetry and status.

A Priori Logging Buffer and log next N seconds (N specified by user).

When logging is inactive, incoming telemetry and status is still buffered.

For both flavours, telemetry FITS tables are created on disk when logging commences,
sized for N seconds of data. Initially-empty status tables are created in a memory buffer,
using a facility provided by the cfitsio library (these will be copied to disk when logging
ends). A pair of event sources are set up for each client, to trigger (a) writing of chunks
of telemetry data to disk and (b) status to memory. These work slightly differently for the
two logging flavours:

A Posteriori Logging An idle function logs one second of data each time it is invoked.

12

A Priori Logging A 1 Hz timeout function logs all available data (to catch up in case of
delays) each time it is invoked.

The server keeps track of how much data has been logged for each client, and when the
requested N seconds have been logged the event sources for that client are cancelled.
When all logging event sources have been destroyed the status tables are moved from
memory to the disk file. This also occurs when a logging operation is cancelled by the
user, in which case the server also removes unused reserved space from the telemetry
tables. Removal of reserved space and moving of status tables are carried out in a separate
thread; while this is running new logging operations are prevented from starting.

Subsequent logging operations record new sets of tables in the same FITS file on disk,
until the server receives a request to open a new file.

4 Connection Manager

The Connection Manager facilitates the implementation of a control user interface where
the available operations depend on which delay line sub-systems are available.

The manager is implemented as a GLib object which keeps track of client connections to
the Telemetry Server (by connecting to its signals). When the conditions for a particular
delay line being available have been fulfilled, it instantiates a delay line system object
(Sec. 5.1), and announces its existence by emitting a signal. The manager continues to
monitor connections to the server, and destroys the system object (emitting another signal)
when the conditions cease to be fulfilled.

The conditions for a delay line being “available” are currently:

• Relevant trolley micro connected

If other sub-systems (such as the VME system) are disconnected, the system state ma-
chines only provide access to an appropriate subset of the delay line system functionality.
Hence the delay line system can be operated in a test rig with no metrology system, using
direct slew mode and with the shear loop deactivated.

The connection manager also manages resources and data that should be shared between
multiple delay lines, such as the common offset and the socket connection to the VME
system.

5 System-level Application Programming Interface

In the OpdGui application, delay line system objects are created by the Connection Man-
ager once the relevant sub-systems have connected to the Telemetry Server. Each such

13

object (an instance of the DGSystem class) maintains high-level state information for a
single delay line.

Control of delay line functions (such as following a particular trajectory or activating the
shear loop) is accomplished by calling methods of the system object.

5.1 DGSystem: Delay Line System Class

The DGSystem class implements an application programming interface for control of a
single delay line. The methods provided include (the following is not an exhaustive list):

• Specify OPD mode (control of metrology loop):

– Stop/Idle

– Datum seek

– Follow specified trajectory:

* Sidereal trajectory

* Fixed position trajectory

* Constant velocity trajectory

* Constant acceleration trajectory

– Direct Slew (slew command direct to trolley micro)

• Return current position/velocity

• Activate/deactivate steering loop

• Activate/deactivate shear loop

• Adjust focus

The above list includes methods to select one of three mutually-exclusive “system OPD
modes”:

Stop/Idle Mode In this mode the trolley is stopped by the workstation sending a DirectSlew
command with a demand velocity of zero to the on-board trolley micro. An Idle
command is sent to the VME CPU, which is not required to do anything in this
mode.

Datum Mode In this mode a Datum command is sent to the VME sub-system, instructing
it to transmit a sequence of slew velocities to the trolley micro in order to seek the
datum switch, and then reset the metrology count.

14

Follow Mode In follow mode, the workstation transmits a trajectory demand to the VME
sub-system, which controls the cat’s-eye and carriage in order to follow the demand,
ideally in track mode but automatically switching into slew mode to reposition the
trolley as necessary.

Note that although most of the functions provided by the system API require coordina-
tion of several delay line sub-systems, several only involve commanding the trolley micro
(direct slew, steering on/off and focus control).

5.2 State Machine

The system class relies on a set of state machines to translate API function calls into com-
mands to delay line sub-systems, and to provide feedback on the success or failure of
requests made via the API.

Each control axis of each trolley has its own independent state machine, each with several
possible states:

OPD state machine Controls axial motion of the carriage and cat’s-eye

Steering state machine Controls the state of the steering servo

Tip-tilt state machine Controls the state of the tip-tilt servo

Focus state machine Controls the state of the cat’s-eye focus servo

Each state of the above state machines is implemented as a GObject class. Communication
between the system API and the state machines is accomplished by means of GLib signals,
emitted by DGSystem objects. Each state machine class only provides handlers for signals
that it makes sense to respond to, for example the “Steering On” state only has a handler
for the “steeringoff” signal. Hence responses to user requests delivered via the system
API will depend on the current system state.

State changes occur in response to changes in sub-system status (obtained from the Teleme-
try Server), which in many cases must be preceeded by receipt of an appropriate command
acknowledgement. State changes are also triggered by sub-systems disconnecting from
the workstation.

A parent state class provides a framework for state transitions, including:

• Virtual signal handlers, connected at construction.

• A mechanism for conditional state transitions, triggered by sub-system status changes.

• Convenience methods for:

15

– Sending commands

– Querying sub-system status

– Unconditional state transitions

Information on the current state of the delay line is made available through the DGSystem
API, and is also transmitted to the Telemetry Server over the loopback interface using the
dlmsg status message protocol. These system status items are retrieved by DGSystemGui
using the API and displayed in the relevant application system control page (Figure 2).

The system status also includes log and fault messages generated by the system object.
These are displayed and logged by DGOpdGui in the same way as log/fault messages
sent by delay line sub-systems.

6 Trajectory Calculator

Delay line system objects (Sec. 5.1) incorporate a trajectory calculator object, to transmit a
trajectory demand to the VME system.

Each instance of the Trajectory “class” generates the demand for a specific trolley (spec-
ified at construction). A soft real-time periodic task (implemented using the GLib event
loop) is used to send command data messages (and a copy of the data as telemetry to the
Telemetry Server) containing the demanded position and velocity as a function of time,
for times slightly later than the transmission time. The periodic task is rescheduled as
necessary so that the lead time stays between configurable lower and upper soft limits
(the current values are 990 and 1010 ms). If the lead time drops below a configurable hard
limit (currently 100 ms), the trajectory sequence is restarted (giving rise to a discontinuity
in the trajectory).

The workstation software now uses a dedicated second thread for the trajectory calculator,
implemented using the GLib interface to the POSIX thread libraries. This thread runs
a second instance of the GLib main event loop. The only event source associated with
this main loop is the periodic task described in the previous paragraph, all other events
being handled by the primary thread’s main loop. The dual-threaded implementation
was adopted to prevent occasional delays to the periodic task caused by display updates,
such as redrawing the entire application window.

The following types of trajectory are supported; switching between different trajectories
is accomplished with a method call.

• Sidereal trajectory

• Constant velocity trajectory (fixed position is a special case of this)

• Constant acceleration trajectory

16

• Slew trajectory

• Undefined trajectory

If an undefined trajectory is specified, the periodic task continues to run and to transmit
telemetry (containing dummy values), but command data messages are not transmitted.

Constant velocity and constant acceleration trajectories may either be specified to pass
through a specific point (position and time), or to match up with the last demand transmit-
ted for the previous trajectory. The latter behaviour avoids discontinuities when changing
trajectory, so that the trolley responds smoothly.

The trajectory object also transmits status messages at 10Hz containing the current position
(PosDemNowN) and velocity (VelDemNowN) demand. If the trajectory type or parameters
have changed recently this will correspond to the previous trajectory. A boolean status
item, FollowCurrentN ,indicates whether the latest trajectory has come into force.

17

	Introduction
	Development and Execution Environment
	Workstation Application Architecture

	User Interface
	DGOpdGui: Workstation Graphical User Interface Class
	DGSystemGui: System control graphical user interface class
	DGStatusDisplay: Status display widget class
	ClientDisplay: single-client status display class
	DGTermUi: Terminal User Interface Class

	Telemetry Server
	Telemetry/Status/Command Logging

	Connection Manager
	System-level Application Programming Interface
	DGSystem: Delay Line System Class
	State Machine

	Trajectory Calculator

