Delay Line Risk and Hazard Management

Martin Fisher – March 2007-03-26

Risks & Hazards

Risks are generally those issues or incidences that may affect the project whereas hazards affect people or equipment during the project and particularly during the service life. Some risks get referred to the hazard category where appropriate.

Risk Assessment

Risk can be classified as Management or Technical. There is a set of risks in each of these categories that apply to this project but it is too late and probably not worthwhile identifying all of them. Some technical risks could be identified though, specifically where the delivery of the first production trolley and the design and drawing set are concerned.

		-	
Level	Designation	Definition	Implications
Low	Insignificant/Minor	No injury, low £	Minor changes to functionality
Grading 1		loss, minor loss of	requiring remedial action or
		reputation.	minor delay to the schedule.
Medium	Moderate	Injuries need	Some functionality is
Grading 2		medical attention,	Compromised, requiring
		significant £ loss,	changes to the science
		significant loss of	specification or some delay in
		reputation.	the schedule.
High	Major Problem	Extensive injury,	Major risk of project failure to
Grading 3	-	large £ loss, severe	meet requirements or significant
		loss of reputation	delay to schedule. Some impact
			on value
Very	Catastrophe	Potential loss of	Catastrophic risk to project.
High	-	life, significant £	Will mean that the project will
Grading 5		loss	face failure or very significant
			delay to schedule and great
			overspend.

Potential Risk to project - Severity:

Possible quantifications

Risk	Monetary Overspend	Work Package Slip	Critical Path Slip
Low	Up to £50k	2-3 months	N/a
Medium	£50k-£100k	4-5 months	1 month
High	£100k-£250k	6-12 months	2 months
Very High	£250k+	12 months+	3 months

Probability of occurring

Level	Designation	Definition	Example
Low	Rare	Occur in exceptional	
Grading 1		circumstances	
Medium	Possible	Might Occur	
Grading 2			
High	Likely	Quite likely to occur	
Grading 3			
Very	Almost Certain	Will almost certainly	
High		occur	
Grading 4			

Risk exposure Matrix

Probability				
Very High	4	8	12	20
Grading 4				
High	3	6	9	15
Grading 3				
Medium	2	4	6	10
Grading 2				
Low	1	2	3	5
Grading 1				
	Low	Medium	High	Very High
Severity	Grading 1	Grading 2	Grading 3	Grading 5

Impact:

Risk exposure < 3 Insignificant 3-4 Low 5-8 Medium >8 High

Corrective Measures:

Removal - where risks are eliminated from the project and no longer pose a threat **Reduction -** by taking certain actions immediately, management can reduce risks **Avoidance -** risks can be anticipated by taking contingency action should they occur. **Transfer -** risks can be passed to other parties; unfortunately this does not reduce the risk it just causes someone else a problem!

Acceptance - where the potential benefits of taking the risk outweigh the costs

Hazard Assessment

The ALARP (As Low As Reasonably Practicable) principle will form the basis for safety and Hazard management. A generally accepted definition of ALARP, can be summarised thus:

The principle that safety risks should be reduced to a level which is as low as reasonably practicable is the primary objective of the Safety Management System. It means that not only must risks be reduced to a tolerable level, but a further reduction must be achieved, provided that the penalties, in terms of cost, time and effort, are not disproportionate to the improvements gained.

Note: Hazard Categories A, B, C and D shown within triangle.

Definitions

Definition	Description
Frequent	Likely to occur frequently
Ă	(≥ 6 times in 25 years)
Probable	It will occur several times during 25 years
B	(4-5 times in 25 years)
Occasional	Likely to occur during 25 years
C	(2-3 times in 25 years)
Remote	Unlikely but possible to occur during the lifetime (typically once in 25
D	years)
Improbable	So unlikely that the occurrence can be assumed not to be experienced
E	

Table 1: Definition of Hazard Probability

Category	Personnel	Telescope / Systems		
Catastrophic	Death	System Loss ¹		
I				
Critical	Severe injury ² , major	Major system damage ³		
II	occupational illness			
Marginal	Minor injury, minor	Minor system damage ⁴		
III	occupational illness			
Negligible	Less than minor injury/occupational illness and minor system damage			
IV				

Table 2: Hazard Severity Definitions.

Notes:

1) *System Loss*: the system cannot be recovered at 'reasonable' costs (costs >£250k)

2) Severe Injury: partial permanent disability of human beings

3) *Major System Damage*; the system can be recovered (for cost of $\pounds 100k - \pounds 250k$) but extensive industrial support is necessary and/or the system is out of operation for more than 3 weeks.

4) *Minor System Damage*: the system can be repaired (for cost of $\pounds 50k - \pounds 100k$) without support from industry and/or the system is less than 3 weeks out of operation

	Severity Category						
Frequency of Occurrence:	Catastrophic Critical Marginal Negligible I (=5) II (=4) III (=3) IV (=1)						
Frequent A (=5)	25	20	15	5			
Probable B (=4)	20	16	12	4			
Occasional C (=3)	15	12	9	3			
Remote D (=2)	10	8	6	2			
Improbable E (=1)	5	4	3	1			

Table 3: Risk Categories expressed in Terms of Frequency and Severity.

1-2 Tolerable (Alarp Level D).

3 Tolerable subject to review (Alarp Level C).

4-9 Undesirable. Only accepted if risk reduction is impracticable (Alarp Level B) 10-25 Unacceptable. Mitigating action essential (Alarp Level A)

Risk/Hazard Log

Raising a risk or hazard issue should be done by email to the MROI team and contain the following information (note that the risk or hazard definitions and weightings should be used as appropriate)

Date raised: Location/system/subsystem: Who identified it: Type (RISK/HAZARD): Hazard target (Hardware/personnel/environment): Description of Risk or Hazard: Potential consequences: Identifier's evaluation: For RISK Severity (1,2,3 or 5); Probability (1 to 4): For HAZARD Severity (1,3, 4 or 5); Probability (1 to 5):

Mitigating Action:

The team should then discuss the issue and agree or otherwise to have it entered in the hazard log. If mitigation is required then someone should be allocated that task. The aim is to have all the hazards identified and mitigated by the FDR. MF will keep the hazard log up to date and will input anything new to the weekly meeting at the appropriate section.

An example of the Hazard Log with some suggested items is shown on the next page.

Delay Line Risk and Hazard Management

Hazard Log

Hazard Title	Consequences		Effect	Score	Mitigation
		hood			
Catastrophic Re-pressurisation	Sudden air inrush causes trolley to accelerate	2	5	10	Automatic but passive closure
of delay line through window	towards far end of delay line. Potential impact at				of window. Restricted access to
Tallure.	nigh speed causing severe damage to trolley and possible failure of pipe end-plate				during operations
Maximum Likely-hood	Weakening of pipe support system leading to	2	5	10	Design pipe supports to survive
Earthquake (MLE).	pipeline collapse and potential sudden vacuum	_	C	10	MLE.
1 ()	failure				
Maximum Likely-hood	Failure of pipeline axial restraint leading to large	2	4	8	Design axial pipe restraint to
Earthquake (MLE).	axial pipe motion and potential damage to				endure MLE and limit
	metrology system				movement of pipe.
Accidental side-loading of a	Due to vehicle collision.	2	3	6	Prevent vehicle access.
pipe line.	Due to handing of delay line pipe	3	3	9	Design pipe supports to
					withstand maximum side load
					under handling activities.
Pipeline collapse during	Damage to pipe and supports.	3	4	12	Installation procedures
erection.	Personal injury	3	5	15	
Accumulation of static charge	Corona discharge	5	3	15	Prevent charge build-up
on trolley.	Shock hazard when removing trolley from pipe	5	3	15	Handling procedure
Dropping trolley during	Dropping trolley will damage flexures and could	3	4	12	Special purpose handling
handling.	potentially break primary mirror and deform trolley				equipment and procedures
	shell irretrievably.				