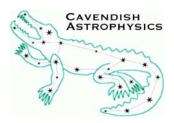
MRO Delay Line


List of Production Trolley Factory Acceptance Tests

INT-406-VEN-0207

The Cambridge Delay Line Team

rev 0.1

15 April 2011

Cavendish Laboratory JJ Thomson Avenue Cambridge CB3 0HE UK

Change Record

Revision	Date	Author(s)	Changes
0.1	2011-04-16	MF	First draft – based on List of tests (AD02)

Objective

This document defines the list of tests to be undertaken for the factory acceptance testing of the production delay line trolley.

Scope

The list is a comprehensive suite of tests defined to show that the derived requirements are met and to the extent possible in a prototype test facility that the top-level requirements can be met in the fully operational delay line. The tests listed in this document apply only to factory acceptance testing of the production trolley though they have been derived from the test defined in AD02.

These tests aim to demonstrate that the performance of the production trolley and the closed loops involving the metrology system and shear system meet requirements. The metrology system with which these test are conducted is the Zygo system and not the prototype metrology design which is proposed for MROI. The trolley passed pre-FAT tests in the lab using the Agilent metrology system designed for MROI.

Reference Documents

RD1 Results of the Risk Reduction Experiments Rev. 1.0, 6th December 2005 RD2 Top-level requirements INT-406-TSP-0002

Applicable Documents

These are other review documents for review which are directly applicable, e.g.

AD01 Derived Requirements INT-406-VEN-0107

AD02 List of Tests INT-406-VEN-0108

Acronyms and Abbreviations

BCA Beam Combining Area Interferometer

BCF Beam Combining Facility MRAO Mullard Radio Astronomy Observatory

BRS Beam Relay System NMT New Mexico Tech

DL Delay Line OPD Optical Path Delay

DLADelay Line AreaSCSSupervisory Control System

ICDInterface Control DocumentTBCTo be confirmedICSInterferometer Control System (now SCS)TBDTo be determined

MROI Magdalena Ridge Observatory

Table of Contents

1	Introducti	ion	5
	1.1 Grou	aping of Tests	5
		conditions	
	1.2.1	Testing at atmosphere	5
	1.2.2	Testing under vacuum conditions	5
2	Test Lists	- }	6
	2.1 Test	at atmosphere	6
	2.1.1	Trolley slew tests	6
	2.1.2	Trolley tracking tests	6
	2.1.3	Trolley trajectory tests	7
	2.1.4	Trolley roll and shear loop tests	7
	2.1.5	Datum tests	8
	2.1.6	Focus mechanism tests	8
	2.1.7	Trolley limits tests	8
	2.1.8	Vacuum integrity test	
	2.2 Tests	s under vacuum	9
	2.2.1	Trolley slew tests	9
	2.2.2	Trolley tracking tests	
	2.2.3	Trolley trajectory tests	9
	2.2.4	Trolley roll and shear loop tests	
	2.2.5	Datum tests	

1 Introduction

The test list presented here is designed to show that the top level and derived requirements are met and that the performance of the system is maintained over representative observing periods. A short description of each test is given together with any specific conditions that should apply for the duration of the test. The derived requirement with which the test is associated is given in the last column of the tables. A top level requirement is identified with the letters TL followed by the section number and paragraph number.

Tests are grouped into categories for convenience of referencing but this is not meant to imply any particular significance or order in testing.

Most tests are conducted at a pressure <1.5 mb but substantial subset of these tests are also performed at atmospheric pressure before the test rig is pumped down. The differences between testing at atmosphere and testing under vacuum are explained below

1.1 Grouping of Tests

Tests are grouped under general categories that address some particular aspect of the requirements. These groups are:

Slew tests: these test the repositioning time of the trolley, the maximum velocity and acceleration, the power consumption and trolley temperatures, and show that the metrology system maintains lock when the shear system and steering loops are closed.

Tracking tests: these comprise constant velocity tests over a range of tracking velocities from 0.1mm/s to 15mm/s, sets of 10 minute long tracking tests to represent normal observation times and tracking over joins to assess the effect of the join.

Trajectory tests: these test the re-positioning of a trolley from tracking at one position to tracking at another position, tracking at constant accelerations and tracking reversal and tracking offsets of 0.5 µm to 10 µm.

Roll and shear tests: these check the operation of the shear loop, the secondary tip/tilt servo and the effect of the steering in open and closed loop. They also provide information on the deviations of the delay line pipe.

Datum tests: these test the repeatability of the datum switch and the overall stability of the datum over a period of time.

Focus tests: these test the resolution and stability of the cat's eye focusing system.

Limit tests: these test the functionality of the limits and the characteristics of the trolley and cat's eye servos when a limit is encountered.

1.2 Test conditions

1.2.1 Testing at atmosphere

Testing at atmosphere is much more convenient than testing under vacuum conditions. Most tests that are met at atmosphere can be expected to meet the requirements under vacuum. The main difference in testing at atmosphere is that air in the pipe will be pushed about by the trolley and so servos will have to work harder and there is more coupling from the trolley to the cat's eye. On the other hand air damping is also increased. The delay line pipe is left partially open at the metrology end to allow air to flow in or out and reduce the effect on the trolley.

1.2.2 Testing under vacuum conditions

When testing under vacuum the proper metrology window end plate is installed on the delay line pipe and metrology windows are fitted. There are no science beam ports. The test rig is evacuated to approximately 0.5 mbar.

2 Test Lists

2.1 Test at atmosphere

2.1.1 Trolley slew tests

Test	Test Description	Primary	Subordinate	Derived/
No.		objective	objectives	Requirement
1	Check velocity ramping under VME	Test	Check	2.2.1
	control by moving fixed distances (plus	repositioning	track/slew	2.2.2
	and minus): 4mm, 10mm, 20mm,	time	switching	
	50mm 100mm 200mm 500mm 2m.	Delay precision		(TL 5.2.4)
2	Carry out a 17m slew with the	Check	Check time	2.2.1
	maximum velocity set to +0.7m/s	metrology lock	Check power	2.2.2
3	Carry out a 17m slew with the	Check	Check time	2.2.1
	maximum velocity set to -0.7m/s	metrology lock	Check power	2.2.2

2.1.2 Trolley tracking tests

Test	Test Description	Primary objective	Subordinate	Derived
No.	-	, ,	objectives	Requirement
1a	Test tracking at rates of (plus and minus) 0.1mm/s, 0.2mm/s, 0.4mm/s, 0.8mm/s and then 1 to 15mm/s in increments of 1mm/s. Steering loop closed.	Test of OPD performance		(TL 5.2.6)
1b	If necessary, repeat a constant velocity tracking test where steering is actuated.	Test of steering influence on OPD		(TL 5.2.6)
2	Continuous tracking for 10 minutes at the following velocities: 0.2mm/s, -1mm/s, +5mm/s and -10mm/s. (log in sections 120s to limit the size of log files)	Test of OPD performance over typical observation time		(TL 5.2.6)
3	If necessary repeat tracking tests across joins – position trolley so as to cross join.	Test of performance over join		(TL 5.2.6)

2.1.3 Trolley trajectory tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	objectives	Requirement
1	Test trajectory acquisition and time by	Check re-		(TL 5.2.4)
	switching from tracking at one position to	acquisition		
	tracking at another position for a range of	time & delay		
	distances e.g 4 mm, 20 mm, 100 mm, 200	precision		
	mm, 500 mm, 1 m and 10 m			
2	Test tracking at constant accelerations 0.3	Test of OPD		(TL 5.2.6)
	μms ⁻² , 0.625 μms ⁻² , 1.25 μms ⁻² .	performance		
3	Test reversing direction while tracking	Test of OPD		(TL 5.2.6)
	with a realistic trajectory.	performance		
4	Test response to fringe tracking offsets of	Test offset		(TL 5.2.11)
	0.5μm and 1μm (also 10μm if can be rate	response		
	limited)			

2.1.4 Trolley roll and shear loop tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	Objectives	Requirement
1	Slew the trolley for the full length of the	Check tip/tilt	Check steering	2.4.1
	test rig at a constant velocity of 90 mm/s		performance	
	With steering and tip/tilt loops closed		Check shear	
			residuals	
2	Slew the trolley at 0.7 m/s	Check tip/tilt	Check shear	44
		range	residuals	
3	Track the trolley at 15mm/s	Check shear	-	44
		residuals		
4	Slew the trolley for the full length of the	Check centre	-	44
	test rig at a constant velocity of 90 mm/s	position of		
	while logging with steering loop off but	steering		
	centred and check roll.			
5	Operate the tip/tilt actuator between its	Check tip/tilt	-	2.1.2.2
	limits in both axes and measure the	range		
	resulting shear of the metrology beam			
	using the shear sensor.			
6	Using the same results gathered in (4)	Check tip/tilt	-	2.1.2.3
	obtain the slew rate of the tip/tilt device in	slew rate		
	both axes.			

2.1.5 Datum tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	Objectives	Requirement
1	Acquire datum 10 times from close range	To check		(TL 5.1.1)
	and check the deviation from zero at the	datum switch		(TL 5.2.4)
	instant before the reset.	repeatability		
2	Acquire datum 10 times from different	To check		(TL 5.1.1)
	starting positions: at, near, far. Check	datum		(TL 5.2.4)
	deviation as for test 1	stability		
3	Acquire datum at various times through	To check		(TL 5.1.1)
	testing phase. Check deviation as for test 1	intra-night		(TL 5.2.4)
		stability		
4	Acquire datum the following day. Check	To check		(TL 5.1.1)
	deviation as for test 1	inter-night		(TL 5.2.4)
		stability		

2.1.6 Focus mechanism tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	Objectives	Requirement
1	Request a range of focus positions to	Test focus	Test	2.1.3.1
	demonstrate the positioning resolution and	resolution	repeatability	
	repeatability ($\pm 5 \mu m$, $\pm 10 \mu m \& \pm 20 \mu m$)			

2.1.7 Trolley limits tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	Objectives	Requirement
1	Drive trolley into each velocity pre-limit	Test velocity		2.3.1
	and check that velocity is limited to 100	limit		
	mm/s	functionality		
2	Drive trolley into each final limit, check	Test final	Check cat's	-
	that trolley stops within allowed distance	limit	eye current	
	and will not drive further but will drive	functionality	limit.	
	out of limit			

2.1.8 Vacuum integrity test

Test	Test Description	Primary	Subordinate	Derived
No.		objective	Objectives	Requirement
1	Pump down to 3 mbar and check pressure	Test of		4.1.3
	over next few hours.	vacuum seals		

2.2 Tests under vacuum

2.2.1 Trolley slew tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	objectives	Requirement
1	Carry out a 17m slew with the	Check	Check velocity	2.2.1
	maximum velocity set to +0.7m/s	metrology lock	Check acc'n	2.2.2
2	Carry out a 17m slew with the	Check	Check time	(TL 5.2.6)
	maximum velocity set to -0.7m/s	metrology lock	Check power	2.5.1
3	Carry out a sequence of slews at	Check	Check steering	2.5.1
	maximum velocity equivalent to	temperatures	performance	
	380m of delay line travel	Check power		

2.2.2 Trolley tracking tests

Test	Test Description	Primary objective	Subordinate	Derived
No.			objectives	Requirement
1	Test tracking at rates of (plus	Test of OPD		(TL 5.2.6)
	and minus) 0.1, 0.2, 0.4, 0.8 and	performance		
	1mm/s, then 2 mm/s to 15 mm/s			
	in 1 mm/s steps. Roll & shear			
	loops closed.			
2	Continuous tracking for 10	Test of OPD		(TL 5.2.6)
	minutes at the following	performance over		
	velocities: 0.2mm/s, -1mm/s,	typical		
	+5mm/s -10mm/s & +15mm/s.	observation time		
	(log in sections 120s to limit the			
	size of log files)			
3	Conduct tracking tests across	Test of	Check that	(TL 5.2.6)
	selected joins at ± 0.2 mm/s, ± 1	performance over	specifications are	
	mm/s ± 5 mm/s, ± 10 mm/s and	join	not exceeded for	
	± 15 mm/s for both front and rear		>0.5s in 60s	
	wheels.			

2.2.3 Trolley trajectory tests

Test	Test Description	Primary	Subordinate	Derived
No.	-	objective	objectives	Requirement
1	Test trajectory acquisition and time by	Check re-		(TL 5.2.4)
	switching from tracking at one position to	acquisition		
	tracking at another position: 4 mm, 10	time		
	mm, 20 mm, 50 mm, 100 mm, 200 mm,			
	500 mm, 1 m, 2m, 10 m and 15 m.			
2	Test tracking at constant accelerations 0.3	Test of OPD		(TL 5.2.6)
	μms ⁻² , 0.625 μms ⁻² , 1.25 μms ⁻² .	performance		
3	Test reversing direction while tracking	Test of OPD		(TL 5.2.6)
	with a realistic trajectory.	performance		
4	Test response to fringe tracking offsets of	Test step		(TL 5.2.11)
	$\pm 0.5 \ \mu m \pm 1 \ \mu m$ and $\pm 10 \ \mu m$	response		

2.2.4 Trolley roll and shear loop tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	Objectives	Requirement
1	Slew the trolley for the full length of the	Check tip/tilt	Check steering	2.4.1
	test rig at a constant velocity of 90 mm/s		Check shear	
	With steering and tip/tilt loops closed		residuals	
2	Slew the trolley at 0.7 m/s	Check tip/tilt	Check shear	44
		range	residuals	
3	Track the trolley at 15mm/s	Check shear	-	"
		residuals		
4	Slew the trolley for the full length of the	Check centre	-	"
	test rig at a constant velocity of 90 mm/s	position of		
	while logging with steering loop off but	steering		
	centred and check roll.			
5	Operate the tip/tilt actuator between its	Check tip/tilt	-	2.1.2.2
	limits in both axes and measure the	range		
	resulting shear of the metrology beam			
	using the shear sensor.			
6	Using the same results gathered in (4)	Check tip/tilt	-	2.1.2.3
	obtain the slew rate of the tip/tilt device in	slew rate		
	both axes.			

2.2.5 Focus tests

Test	Test Description	Primary	Subordinate	Derived
No.		objective	Objectives	Requirement
1	Request a range of focus positions to	Test focus	Test	2.1.3.1
	demonstrate the positioning resolution and	resolution	repeatability	
	repeatability ($\pm 5 \mu m$, $\pm 10 \mu m \& \pm 20 \mu m$)			
2	Step through focus range in 100 μm	Check the	Check	44
	increments and back.	focus range	repeatability	
3	Tracking test at 1mm/s at either end of	Check focus		"
	focus range	mechanism		

2.2.6 Datum tests

Test	Test Description	Primary	Subordinate	Derived
No.	-	objective	Objectives	Requirement
1	Acquire datum 10 times from different	To check		(TL 5.1.1)
	starting positions: at, near, far. Check	datum		(TL 5.2.4)
	deviation as for test 1	stability		
2	Acquire datum at various times through	Intra-night		(TL 5.1.1)
	testing phase. Check deviation as for test 1	stability		(TL 5.2.4)
3	Acquire datum the following day. Check	Inter-night		(TL 5.1.1)
	deviation as for test 1	stability		(TL 5.2.4)