
An Interface to a System in C

Allen Farris

May 17, 2010

Version: 0.2

Document: INT-409-ENG-0070 rev 0.2
Work package: WP 4.09.01

System: MROI Software Engineering

Approved by: Allen Farris
MROI

Lead, Software and Control Systems Group

Magdalena Ridge Observatory
New Mexico Tech
801 Leroy Place

Socorro, NM 87801 USA
http://www.mro.nmt.edu

1

Contents

1 Overview 10

1.1 Structure of an MROI system . 10

1.2 Object-oriented programming in C . 12

1.3 Basic system classes . 14

2 High-level Interface Definition 16

2.1 System worksheet . 16

2.2 Monitor Worksheet . 18

2.3 Fault Worksheet . 19

2.4 Control Worksheet . 19

2.5 Parameters Worksheet . 20

2.6 Requirements on the system . 21

3 An Example 24

4 Communications and Monitoring 30

5 Enumerations 31

5.1 Enumeration: MROIAlertLevel . 31

5.2 Enumeration: MROIExceptionType . 31

5.3 Enumeration: MROILogLevel . 32

5.4 Enumeration: MROILogType . 32

5.5 Enumeration: MROIMessageType . 33

5.6 Enumeration: MROISystemType . 36

5.7 Enumeration: MROISystemState . 36

5.8 Enumeration: MROIHardwareType . 37

6 Extended Data Types 38

7 MCDB Structures 39

7.1 Float Sample . 39

7.2 Name Value Pair . 39

8 Additional General Methods 40

2

9 The ControlSystem Class 41

9.1 Fields . 41

9.2 Methods for constructing and destroying a ControlSystem 42

9.2.1 globalError . 42

9.2.2 createControlSystem . 43

9.2.3 initControlSystem . 44

9.2.4 destroyControlSystem . 45

9.3 Methods for handling exceptions . 45

9.3.1 isSystemException . 45

9.3.2 setSystemException . 45

9.3.3 clearSystemException . 46

9.3.4 getSystemException . 46

9.4 Methods for sending faults, alerts, and operator messages. 47

9.4.1 sendMROIFault . 47

9.4.2 sendMROIAlert . 48

9.4.3 sendMROIOperatorMessage . 48

9.5 Methods for setting log characteristics and writing to the log. 49

9.5.1 getLogFilename . 49

9.5.2 setLoggerBuffersize . 50

9.5.3 setLoggerThreadsOption . 50

9.5.4 logSevere . 50

9.5.5 logWarning . 51

9.5.6 logInfo . 51

9.5.7 logConfig . 52

9.5.8 logFine . 52

9.5.9 logFiner . 53

9.5.10 logFinest . 53

9.5.11 logCurrentException . 54

9.5.12 getLogger . 54

9.6 Methods for accessing the database manager 54

9.6.1 connectToDatabaseManager . 54

9.6.2 disconnectFromDatabaseManager . 55

9.7 Methods for getting basic system characteristics 55

3

9.7.1 getSystemType . 55

9.7.2 getPackageName . 55

9.7.3 getSystemName . 56

9.7.4 getHostAddress . 56

9.7.5 getMainPort . 56

9.7.6 getDataPort . 57

9.7.7 getBacklog . 57

9.7.8 getSOTimeout . 57

9.7.9 getSystemState . 58

9.7.10 getDatabaseManagerConnection . 58

9.7.11 getTelescopeOperatorConnection . 58

9.7.12 getFaultManagerConnection . 59

9.8 Methods for setting basic system characteristics 59

9.8.1 setDatabaseManager . 59

9.8.2 setTelescopeOperator . 60

9.8.3 setFaultManager . 60

9.8.4 setSOTimeout . 61

9.8.5 setLogLevel . 61

9.9 Methods for implementing the system state model 61

9.9.1 startSystem . 61

9.9.2 initializeSystem . 62

9.9.3 beginInitializeSystem . 62

9.9.4 operateSystem . 62

9.9.5 diagnosticModeOn . 63

9.9.6 diagnosticModeOff . 63

9.9.7 shutdownSystem . 63

9.9.8 beginShutdownSystem . 64

9.9.9 aboutToAbortSystem . 64

9.9.10 beginAboutToAbortSystem . 64

9.9.11 stopSystem . 65

9.9.12 initializeSystemAsync . 65

9.9.13 shutdownSystemAsync . 65

9.9.14 aboutToAbortSystemAsync . 66

4

9.10 Methods for implementing monitoring . 66

9.10.1 monitorOn . 66

9.10.2 monitorOff . 66

9.10.3 isMonitoring . 67

9.11 Methods related to communications . 67

9.11.1 breakConnection . 67

9.11.2 terminate . 67

9.11.3 test . 68

9.12 Other methods . 68

9.12.1 setControlMonitorPoints . 68

9.12.2 setControlCommands . 68

10 The ControlException Class 70

10.1 Fields . 70

10.2 Methods . 70

10.2.1 createControlException . 70

10.2.2 destroyControlException . 71

10.2.3 setException . 71

10.2.4 readControlException . 72

10.2.5 writeControlException . 73

10.2.6 toStringControlException . 73

10.2.7 isStatusOK . 73

10.2.8 clearException . 74

10.2.9 getExceptionType . 74

10.2.10getExceptionMessage . 75

10.2.11getExceptionTime . 75

10.2.12getExceptionFilename . 75

10.2.13getExceptionLine . 76

11 The MROISocket Class 77

11.1 Fields . 77

11.2 Methods . 77

11.2.1 createMROISocket . 77

11.2.2 destroyMROISocket . 78

11.2.3 getSocketInputStream . 78

11.2.4 getSocketOutputStream . 78

5

12 The MROIServerSocket Class 79

12.1 Fields . 79

12.2 Methods . 79

12.2.1 createMROIServerSocket . 79

12.2.2 destroyMROIServerSocket . 80

12.2.3 acceptMROIServerSocket . 80

13 The SocketInputStream Class 81

13.1 Fields . 81

13.2 Methods . 81

13.2.1 createSocketInputStream . 81

13.2.2 destroySocketInputStream . 81

13.2.3 receiveSocketInputStream . 82

13.2.4 readBoolean . 82

13.2.5 readByte . 83

13.2.6 readShort . 83

13.2.7 readInt . 83

13.2.8 readLong . 84

13.2.9 readFloat . 84

13.2.10 readDouble . 84

13.2.11 readString . 85

13.2.12 readEnum . 85

13.2.13 readBooleanArray . 85

13.2.14 readByteArray . 86

13.2.15 readShortArray . 86

13.2.16 readIntArray . 86

13.2.17 readLongArray . 87

13.2.18 readFloatArray . 87

13.2.19 readDoubleArray . 88

13.2.20 readStringArray . 88

13.2.21 readEnumArray . 88

14 The SocketOutputStream Class 90

14.1 Fields . 90

6

14.2 Methods . 90

14.2.1 createSocketOutputStream . 90

14.2.2 destroySocketOutputStream . 90

14.2.3 sendSocketOutputStream . 91

14.2.4 writeBoolean . 91

14.2.5 writeByte . 91

14.2.6 writeShort . 92

14.2.7 writeInt . 92

14.2.8 writeLong . 92

14.2.9 writeFloat . 93

14.2.10writeDouble . 93

14.2.11writeString . 93

14.2.12writeEnum . 94

14.2.13writeBooleanArray . 94

14.2.14writeByteArray . 94

14.2.15writeShortArray . 95

14.2.16writeIntArray . 95

14.2.17writeLongArray . 96

14.2.18writeFloatArray . 96

14.2.19writeDoubleArray . 96

14.2.20writeStringArray . 97

14.2.21writeEnumArray . 97

15 The Fault Class 98

15.1 Fields . 98

15.2 Methods . 98

15.2.1 createFault . 98

15.2.2 destroyFault . 99

15.2.3 writeFault . 99

15.2.4 toStringFault . 100

16 The Alert Class 101

16.1 Fields . 101

16.2 Methods . 101

7

16.2.1 createAlert . 101

16.2.2 destroyAlert . 102

16.2.3 writeAlert . 102

16.2.4 toStringAlert . 103

17 The Identification Class 104

17.1 Fields . 104

17.2 Methods . 104

17.2.1 createIdentification . 104

17.2.2 destroyIdentification . 104

17.2.3 readIdentification . 105

17.2.4 writeIdentification . 105

17.2.5 toStringIdentification . 105

18 The OperatorMessage Class 106

18.1 Fields . 106

18.2 Methods . 106

18.2.1 createOperatorMessage . 106

18.2.2 destroyOperatorMessage . 106

18.2.3 writeOperatorMessage . 107

18.2.4 toStringOperatorMessage . 107

19 The RemoteConnection Class 108

19.1 Fields . 108

19.2 Methods . 108

19.2.1 createRemoteConnection . 108

19.2.2 destroyRemoteConnection . 108

19.2.3 readRemoteConnection . 109

19.2.4 writeRemoteConnection . 109

19.2.5 toStringRemoteConnection . 109

20 The Client Class 110

20.1 Fields . 110

20.2 Methods . 110

20.2.1 createClient . 110

8

20.2.2 destroyClient . 110

20.2.3 readClient . 111

20.2.4 writeClient . 111

20.2.5 toStringClient . 111

21 The ControlLogger Class 112

21.1 Fields . 112

21.2 Methods . 112

21.2.1 createControlLogger . 112

21.2.2 destroyControlLogger . 113

21.2.3 setBuffersize . 113

21.2.4 setThreads . 114

21.2.5 writeToLog . 114

22 Change History 116

22.1 Version 0.1 . 116

23 Additional information 117

24 Appendix 118

24.1 ControlSystem.h . 118

24.2 EMSS spreadsheet . 147

24.3 Generated code for file: WeatherStation.h 151

24.4 Generated code for file: WeatherStationInterface.c 154

24.5 Implementation file: WeatherStation.c . 156

24.6 Test program: file CTestWeatherStation.c 157

9

1 Overview

1.1 Structure of an MROI system

This document describes a suite of software that provides an interface to a sub-system within
the MROI software system. To understand the structure, components and features of this
interface and to use it effectively, one must understand the context in which it operates and
the problem it is intended to solve.

The software that manages the MROI is organized as a collection of functionally independent
systems managed by a centralized Supervisory System. These systems reflect the physical
structure of the interferometer and its functionality: unit telescopes, beam relay system,
delay lines, beam combining system, automated alignment system, etc. To operate the
telescope the Supervisory System must be able to monitor and command all of these systems.
Therefore, there must be some mechanism within each system that allows the Supervisory
System to accomplish the actions necessary to direct its activities and monitor its results.
Within the overall MROI software system the Supervisory System is implemented in Java,
but the systems it manages may be implemented in Java or C1. This document describes a
suite of software that an MROI system implemented in C must use to allow it to properly
communicate with the Supervisory System.

The layer of software described in this document does not dictate how a system should be
structured or implemented. It merely provides the high-level functionality that all systems
must have in order to be managed by the Supervisory System. This high-level functionality
provided by a system is understood to be complete; it must include all functions that are
required to operate the system. The system may implement private functions that are not
intended to be accessible by any outside agent. The system itself may be very complex and
may be structured as a collection of sub-systems and, internally, employ these same interface
techniques to manage its own sub-systems. However, this is not required; a system is free to
use whatever techniques best accomplish its goals.

Figure 1 depicts a system that operates within the MROI system environment as viewed by
the Supervisory System. It is identified by a unique name and is of a specified type. It also
has a “state”; it is required to implement a very simple state model, which will be described
later. It is commanded by a Supervisor, part of the Supervisory System, using a protocol
that allows the Supervisor to execute functions within the system that have been identified
as being public and externally executable. It also has the functionality to issue faults and
alerts, as well as send messages directly to the telescope operator. It can, if necessary,
communicate with the Database Manager, also part of the Supervisory System, to get, store
or update data from the archive. The system also writes messages to a local log file in a
standardized format. Finally, the system has the tools necessary to publish monitor data,
which includes engineering data routinely produced to describe its internal conditions and
science data, such as images, that result from executing specific commands. The interface
layer of software described in this document provides such functionality.

1These techniques could be extended to other languages such as C++ or Python, but, so far, this has
not been necessary.

10

Figure 1: Structure of an MROI system

An important point to make about the nature of this interface software is that a system
can be operated in a standalone mode without any network interaction. A system that
uses this interface can be operated and tested without the Supervisory System or any of
its components being present. This aspect of the design facilitates independent system
development and testing. In standalone mode the only functionality a system is required to
implement are necessary external interactions, such as getting configuration data.

How does a system make its public, externally executable functions available? These func-
tions are not generic in nature, but, rather, are specific to a type of system. Further, what is
the required protocol that allows the Supervisor, which may reside on a completely different
computer, to execute these functions in the context of a distributed network?

All public, externally executable functions in a C system are of the usual form:

ReturnType functionName (Type1 parm1, Type2 parm2, Type3 parm3, . . .);

For each function, there is a unique function name, a series of parameters having the indicated
data type, and something that is returned. The returned data may be a single item of data
of one of the familiar data types or a structure of data. In this context of a distributed
network, it may also return a structure indicating an error occurred while executing the

11

function. The protocol mentioned above allows a process, called the client, on a remote host
to pass a formatted message to the system, called the server, that contains the name of the
function and its list of parameters. The server then executes this function, using the supplied
parameters. The interface protocol then formats the results and sends this message to the
requesting client. The interface software described here handles the protocol, formatting
messages, and all of the communications that occur between the client and the server.

The public, externally executable functions in a system are described in a simple spreadsheet.
This spreadsheet is then input to a code generation framework that automatically generates
the interface software necessary to format the messages that flow between the client and
server and execute the proper functions within the system. The functions described in the
spreadsheet are divided into two groups: (1) monitor functions that simply return data, take
no parameters, and do not alter the state of the system; and, (2) command functions that
cause actions in the system to be performed. The command functions take parameters and
alter the state of the system. The spreadsheets also describe fault conditions that might be
associated with monitored data, as well as the frequency and format of monitor data to be
stored in the archive.

The various functions that make up this interface are implemented using an object-oriented
approach and uses the language of classes, fields, and methods that belong to those classes.
The techniques used for implementing this approach in C are described in the following
section. The most important class is called “ControlSystem”, which contains the generic
functionality described above that is common to all MROI systems. The rest of the classes
are used in various ways within the ControlSystem class. A specific type of system within
MROI may be thought of as an extension of the ControlSystem class.

1.2 Object-oriented programming in C

This section is not an introduction to object-oriented programming concepts. However, it is
an introduction to how to do object-oriented programming in the C language.

Generally speaking, a class2 is represented as3:

class ControlLogger {

// This section declares fields that belong to the class.

ControlSystem* system; // The control system to which this logger belongs.

char* logFilename; // The log file name associated with this system.

long int logFile; // The file handle of the log file.

ControlException* status; // The current status of the logger.

bool isThreads; // If ‘isThreads’ is true, each write is protected by a lock.

long int buffersize; // The size of the buffer that holds the log records.

char * buffer; // The allocated buffer, if any, to hold the log records.

// This section declares methods that belong to the class.

createControlLogger (char* filename, ControlSystem* system);

void destroyControlLogger ();

2This C-like example is not intended to display a correct syntax.
3This example is taken from the interface definition of the ControlLogger class.

12

void setBuffersize (long int buffersize);

void setThreads ();

void writeToLog (MROILogLevel logLevel, MROILogType logType, char* message);

};

Fields within a class are internal items of data that are used to implement the functionality
of the class. These are usually private and are not intended to be directly accessed. Methods
are functions that are executed within the context of the class. They may be either private,
i.e. only executed internally, or public, i.e. executed by some agent outside the context
of the class. There are two special functions associated with a class: the constructor and
the destructor. The constructor method, in this case ‘createControlLogger’, constructs the
object by allocating space for all its fields, initializing them, and constructing any objects
that are used internally. The destructor, ‘destroyControlLogger’, destroys the object by
destroying all objects used internally and freeing all space currently allocated to the object.

We translate this approach into C in the following manner. The fields within the class are
embedded in a C structure. The constructor method is implemented as a C function that
allocates and initializes this structure and returns a pointer to the newly allocated structure.
This pointer is said to point to an ‘object’ of the class type. All other methods that belong
to the class are implemented as ordinary C functions, but each function takes an additional
argument, viz. a pointer to the newly created object, the structure containing the current
value of the fields. The functions all operate on this object. Additionally, the concept of
‘private’ fields or methods is difficult to implement in C, so we use no specific techniques to
implement the object-oriented public/private distinction in C.

Using the example above, the C version of this class is:

/*

* Class: ControlLogger

*/

typedef struct _ControlLogger ControlLogger;

struct _ControlLogger {

// The control system to which this logger belongs.

ControlSystem* system;

// The log file name associated with this system.

char* logFilename;

// The file handle of the log file.

long int logFile;

// The current status of the logger.

ControlException* status;

// If ‘isThreads’ is true, each write is protected by a lock.

bool isThreads;

// The size of the buffer that holds the log records.

long int buffersize;

// The allocated buffer, if any, to hold the log records.

char * buffer;

};

ControlLogger* createControlLogger (char* filename, ControlSystem* system);

void destroyControlLogger (ControlLogger* this);

13

void setBuffersize (ControlLogger* this, long int buffersize);

void setThreads (ControlLogger* this);

void _writeToLog (ControlLogger* this, MROILogLevel logLevel, MROILogType logType, char* message);

The ‘createControlLogger’ function returns a pointer to the newly created ControlLogger
object. The other functions all take a pointer to that object as its first parameter: Control-
Logger* this4. Since names of functions in C must be unique across the application, special
care must be taken to craft function names. The underscore on the ‘writeToLog’ function
is intended to convey that this function is intended to be private and not directly accessi-
ble. Likewise, the various fields within the ControlLogger structure should not be accessed
directly.

The code above defining the ControlLogger class is usually placed in a ‘.h’ file, along with
the definitions of other classes in the application. The code that implements the methods of
the class are placed in a file called ‘ControlLogger.c’.

All the classes implemented in this interface follow this general pattern.

1.3 Basic system classes

The remaining sections of this document explain in detail the various features and function-
ality of this interface. The text of the interface definition, ControlSystem.h, is reproduced in
the Appendix. If you want to know the precise syntax in C, you may reference this definition
as you read the sections.

Section 2 describes the layout of the spreadsheets used to define the high-level interface of a
system and the requirements it places on functions in a system. Section 5 contains a list of
enumerations used in the interface definition. This list of enumerations may be thought of
as providing a basic system-wide vocabulary and it will grow as applications are developed.
Section 6 is a list of items that function as extended data types, most of which represent the
values of physical quantities in specified units. Section 7 contains the definition of structures
that are used in the MROI Monitor and Configuration database (see Reference [3] in section
23) and section 8 contains the definition of several general-purpose functions that are used
in the implementation of this interface. In a manner similar to the enumerations, additions
will be made to the extended data types and structures as they are needed in developing
new applications.

The most important section is section 9, which is the definition of the ControlSystem class.
It is complex and contains many methods. Its methods are divided into related groups:

• Constructor and destructor

• Methods for handling exceptions

• Methods for sending faults, alerts, and operator messages

4In various object-oriented programming languages it is common to designate such a pointer using the
name ‘this’, meaning this object.

14

• Methods for setting log characteristics and writing to the log file

• Methods for accessing the Database Manager

• Methods for getting basic system characteristics

• Methods for setting basic system characteristics

• Methods for implementing the system state model

• Methods for implementing data monitoring

• Method related to communications

• Other methods used by the Supervisory System

The remaining sections define classes that are mainly used internally in the ControlSystem
class. These include:

• ControlException

• MROISocket

• MROIServerSocket

• SocketInputStream

• SocketOutputStream

• Fault

• Alert

• Identification

• OperatorMessage

• RemoteConnection

• Client

• ControlLogger

15

2 High-level Interface Definition

The definition of the high-level interface to a system is expressed using a spreadsheet, actually
a set of spreadsheets. This definition also imposes requirements on the system to implement
the functionality expressed in the spreadsheets. In this section we will describe the contents
of the spreadsheets and the constraints on the functions that a C system must implement.

Two spreadsheet applications have been used and tested to create the high-level interface
definition of a system: Microsoft’s Excel and OpenOffice’s Calc. If Excel is used the spread-
sheet must be saved using the “XML Spreadsheet 2003” format (“.xml” file extension). If
Calc is used, the spreadsheet should be saved as an “.ods” file, which is the OpenOffice
default format. Either format may be used as input to the code generation process, but
OpenOffice is preferred, simply because it is open source.

There are five worksheets contained in the spreadsheet, whose names are:

• System Defines attributes of the system as a whole.

• Monitor Defines monitor points, which includes engineering data routinely produced
to describe internal conditions and science data, such as images, that result from exe-
cuting specific commands.

• Fault Defines faults associated with monitor points.

• Control Defines commands used to initiate various actions within the system.

• Parameters Defines parameters associated with specific commands or associated with
the system as a whole.

The example in section 3 refers to the spreadsheet in the appendix 24.2, which may be used
a template.

In filling out the columns of a worksheet, there is an important point that must be made.
The value of a column must not be blank; if a particular column does not apply or there is
no value for it, then ‘none’ should be entered. The purpose of this convention is to simplify
the process of parsing the spreadsheet file. Blank column entries are particularly difficult to
deal with in the output formats.

In the descriptions of the worksheets that follow, the difference between a ‘name’ and ‘text’
is that a name cannot have embedded spaces while text can.

2.1 System worksheet

The System worksheet contains basic data about the system as a whole, including the formal
document that serves as the primary description of the system. It is understood that the
system conforms to and is an implementation of the requirements and concepts in this
document.

16

There can be more than one system described in a given spreadsheet. For example, a given
system, such as the Environmental Monitoring System, may consist of a collection of different
types of systems: weather station, all-sky camera, seeing monitor, dust monitor, etc. These
can all be described in a single spreadsheet with the subordinate systems being a part of the
overall Environmental Monitoring System.

Row 1 must be the name of the worksheet: System Interface Definition.

Row 2 must contain the names of the columns.

The actual values of the columns begin in row 3. The column names and their meaning are:

• Name (name) The short name by which this type of system is known.

• Description (text) A brief description of the system.

• Package (name) The package name of this system (only used for Java systems).

• Import (text) Additional files to be imported for the system (only used for Java sys-
tems). This entry can be a series of names separated by spaces.

• Full Name (text) The full name of this system.

• Extends (name) The name of a system of which this one is an extension (only used
for Java systems).

• Parent System (name) The name of the system to which this system belongs. This
entry allows the definition of multiple systems that are contained within a master sys-
tem.

• Implement (no, Java, C, C-no-threads) Whether this system is to be implemented or
not; and, if so, whether it is a Java or C system. If it is a C system, the ‘C-no-threads’
word indicates that the C system does not use threads.

• Is Asynchronous (yes, no) Does this system implement asynchronous methods?

• Is A Monitor (yes, no) Does this system produce monitor data?

• Work Package (text) The MROI work package to which this system belongs.

• Document Title (text) The title of the document that serves as the primary descrip-
tion of this system.

• Document Number (text) The MROI document number of the primary document.

• Document Issue (text) The revision number of the primary document to which this
system conforms.

• Document Date (date) The date of the primary document to which this system
conforms.

17

2.2 Monitor Worksheet

The Monitor worksheet describes each monitor point within the system. Names of monitor
points must be unique within the system to which they belong.

Row 1 must be the name of the worksheet: Monitor Points.

Row 2 must contain the names of the columns.

The actual values of the columns begin in row 3. The column names and their meaning are:

• Name (name) The name of this monitor point.

• System (name) The name of the system (from the System worksheet) to which this
monitor point belongs.

• Description (text) A brief description of this monitor point.

• Returns (name) The data type that this monitor point returns.

• Can Be Null (yes, no) Can this monitor point return a null value?

• Throws Exception (yes, no) Can this monitor point return an exception?

• Asynchronous (yes, no) Is this monitor points implemented by an asynchronous
method?

• Data Unit (name) The physical unit that describes this monitor point (this is the
unit that is used in archiving this data), called the canonical value.

• Minimum Value (number) The maximum value of this monitor point.

• Maximum Value (number) The minimum value of this monitor point.

• Default Value (number) A default for this monitor point (used in simulations).

• System Unit (name) The physical unit that is used internally in this system in de-
scribing a raw value of this monitor point.

• Raw Data Type (name) The data type associated with the raw value of this monitor
point.

• Scale (number) The scale used to convert a raw value to a canonical value. The
formula is canonical-value = raw-value * scale + offset.

• Offset (number) The offset used to convert a raw value to a canonical value.

• Mode (any, diagnostic, operational) The system state in which this monitor point
can be executed, usually ’any’. For example, if labeled ‘diagnostic’ then this monitor
point can only be executed in diagnostic mode.

• Implement (yes, no) Should a method be generated to execute this monitor point?

18

• Archive Interval (secs) (name) The interval, in seconds, at which this monitor
point should be stored in the archive.

• Archive Only On Change (yes, no) Should this monitor point be archived only
when it changes in value?

• Display Unit (name) The units in which to display, in a GUI, values retrieved from
the archive for this monitor point.

• Graph Minimum (number) The graph minimum to be used in a GUI display.

• Graph Maximum (number) The graph maximum to be used in a GUI display.

• Graph Title (text) The title to be used in a GUI display.

2.3 Fault Worksheet

The Fault worksheet describes each fault that might be generated by the system. Names of
faults must be unique within the system to which they belong.

Row 1 must be the name of the worksheet: Fault Definitions.

Row 2 must contain the names of the columns.

The actual values of the columns begin in row 3. The column names and their meaning are:

• Fault Name (name) The name of this fault condition.

• System (name) The name of the system (from the System worksheet) to which this
fault belongs.

• Monitor Point (name) The name of the monitor point, if any, (from the Monitor
worksheet) to which this fault belongs. A fault condition may be associated with the
system as whole, in which case ‘none’ should be entered.

• Description (text) A brief description of the fault condition.

• Fault Condition (text) This item has not been defined.

• Fault Severity (text) This item has not been defined.

• Fault Action (text) This item has not been defined.

2.4 Control Worksheet

The Control worksheet describes each command in the system. Parameters that are associ-
ated with these commands are in the next worksheet. Names of commands must be unique
within the system to which they belong.

Row 1 must be the name of the worksheet: Control Commands.

19

Row 2 must contain the names of the columns.

The actual values of the columns begin in row 3. The column names and their meaning are:

• Name (name) The name of this command.

• System (name) The name of the system (from the System worksheet) to which this
command belongs.

• Description (text) A brief description of this command.

• Returns (name) The data type that this command returns.

• Can Be Null (yes, no) Can this command return a null value?

• Throws Exception (yes, no) Can this command return an exception?

• Asynchronous (yes, no) Is this command implemented by an asynchronous method?

• Mode (any, diagnostic, operational) The system state in which this command can
be executed, usually ’any’. For example, if labeled ‘diagnostic’ then this command can
only be executed in diagnostic mode.

• Implement (yes, no) Should a method be generated to execute this command? This
item usually ‘no’; it might be ‘yes’ if there are necessary data conversions to be made.

2.5 Parameters Worksheet

The Parameters worksheet define the parameters that are associated with specific commands
or with the system as a whole. Parameter names associated with commands only have to
be unique within the context of the command to which they belong. Names of parameters
that belong to the system as a whole are required to be unique within that entire context.

Row 1 must be the name of the worksheet: Parameters.

Row 2 must contain the names of the columns.

The actual values of the columns begin in row 3. The column names and their meaning are:

• Parameter Name (name) The name of this parameter.

• System (name) The name of the system (from the System worksheet) to which this
parameter belongs.

• Command (name) The name of the control command (from the Control worksheet)
to which this parameter belongs, if any. If this parameter belongs to the system as a
whole, then ‘none’ should be entered.

• Description (text) A brief description of this command.

• Required (yes, no) Is this parameter required?

20

• Data Type (name) The data type of this parameter.

• Data Unit (name) The physical unit that describes this parameter. This is the
canonical value, the unit used by an external agent in sending data to this system.

• Minimum Value (number) The maximum value of this parameter, in canonical
units.

• Maximum Value (number) The minimum value of this parameter, in canonical
units.

• Default Value (number) A default for this parameter (used in simulations), in
canonical units.

• System Unit (name) The physical unit that is used internally in this system in de-
scribing a raw value of this parameter.

• Raw Data Type (name) The data type associated with the raw value of this param-
eter.

• Scale (number) The scale used to convert a raw value to a canonical value. The
formula is canonical-value = raw-value * scale + offset.

• Offset (number) The offset used to convert a raw value to a canonical value. The
formula is canonical-value = raw-value * scale + offset.

2.6 Requirements on the system

The previous discussion provides a view of the basic process of defining the high-level inter-
face. The question we will turn to now is: What is required of the system? How does this
definition get translated into the actual internal workings of the system?

A detailed example is given in the following section. For now, we will merely make a few
introductory remarks that will serve as an overview to this topic.

For each monitor point in the Monitor worksheet or control command in the Control work-
sheet of the spreadsheet, the system must implement a corresponding function. The first
issue is what such a function returns. In general, this function can return: (1) a primitive
data type, (2) one of the extended data types listed in section 6, or (3) one of the structures
in section 7. The items in these sections will be expanded as necessary. The supported
primitive data types in C are:

• void indicates that nothing is returned

• bool true or false

• char a signed 8-bit integer

• short int a signed16-bit integer

21

• long int a signed 32-bit integer

• long long int a signed 64-bit integer

• float an IEEE 32-bit floating point number

• double an IEEE 64-bit double precision number

• string a sequence of characters followed by a null (char* in C)

• enumeration the numerical value of the enumeration, which is an int in C

If the spreadsheet entry defining the monitor point or the control command can return
an exception (the ‘Throws Exception’ column is ‘yes’), which is usually the case, then the
function must contain an additional parameter, viz. a pointer to a ControlException object:
“ControlException* err”. (The ControlException class is discussed in section 10.) This
exception object should initially be cleared and, if an error is encountered in executing the
function, the exception should be set using the ‘setException’ method.

Therefore, if we have a monitor point called ‘Temperature42’ that returns a temperature, its
signature in the system would be:

Temperature getTemperature42(System* this, ControlException* err);

The parameter ‘this’ is a pointer to the system object that was created during the system
initialization process and is an extension5 of the ‘ControlSystem’ class. The monitor point
name is the name that in the database; the name of the function that reads the monitor
point is is formed by placing ‘get’ before the monitor point name.

If we have a control command that sets an exposure time in seconds as an integer, its
signature in the system would be:

void setExposure(System* this, long int seconds, ControlException* err);

The above holds for all synchronous functions and for all asynchronous functions in C systems
implemented using threads. However, for C systems that do not use threads, asynchronous
functions must be implemented differently. We must now explain this issue.

Synchronous and asynchronous functions are really defined from the client’s perspective. A
synchronous command blocks the client until the function is executed by the server. In
other words, it executes the function immediately and returns; the client waits until the
server has completed the execution. An asynchronous command is one that usually takes
a much longer time to execute; it does not block the client. An asynchronous command
is accepted by the server and an acknowledgement is immediately sent to the client. The
function is then scheduled to be executed by the server at some later time; so the results of
the execution are not sent to the client until a much later time.

5The process of “extending” a class will be explained in the example in section 3.

22

Asynchronous commands are most easily implemented using threads. A thread, whose pur-
pose is to execute the asynchronous function, is created and executed, returning the results
whenever it is completed. However, not all C programs, especially those with hard real-time
constraints, are implemented using threads. Typically, such programs place the command
on a queue to be executed whenever the system has enough time to do it. The handling
of such cases requires a slightly different mechanism. For C systems that are implemented
without using threads, asynchronous commands require an additional parameter: a pointer
to a function that handles whatever is returned by the execution of the command. This
mechanism is called a “callback”.

Suppose there is a command to activate a small motor that moves a mirror. The command
takes the required angular displacement in radians and returns the new position of the mirror
when the operation is completed. The function is asynchronous. The signature of such a
function within a C system that does not use threads is:

void moveMirror(System* this, Angle offset, ControlException* err,

void (*callback)(System*, Angle, ControlException*));

The ‘callback’ parameter is a pointer to a function of the form:

void moveMirrorReturn (System* this, Angle newPosition, ControlException* err);

The actual call to the ‘moveMirror’ function is:

moveMirror(this, offset, err, moveMirrorReturn);

The ‘moveMirror’ function must be implemented in the following manner. If this command
is not a valid command or if there is any error in any parameter, then the ControlException
is set and the function returns immediately; nothing else happens. Otherwise, the system
pointer, callback pointer and exception are saved, whatever action is required to move the
mirror is initiated, and the function returns, indicating that the function has been accepted.
When the action is completed, the callback function is called, in this case ‘moveMirrorRe-
turn’. The code generation framework automatically generates the callback function, in this
case ‘moveMirrorReturn’, for the C-no-threads case. However, if the system is being tested
in the standalone mode, this function must be supplied.

23

3 An Example

As an example we will use a weather station within the Environmental Monitoring System.
This is not the real weather station; it is a simple example to illustrate the features of the
interface. The spreadsheets that define the high-level interface are shown in the appendix in
section 24.2.

The System spreadsheet indicates that WeatherStation is a system implemented in C us-
ing threads. In the following subsection we will indicate the differences in a system that
does not use threads. Three are three monitor points: ‘Temperature’, ‘WindSpeed’, and
‘WindDirection’, which are all synchronous commands. There is a single asynchronous com-
mand: ‘getAverageWindSpeed’, which takes an interval of time in minutes as a parameter.
The Parameters worksheet also indicates that there are two parameters that belong to the
WeatherStation system and are not part of any command: ‘weatherFilename’ and ’weather-
File’.

We must explain certain features of the naming convention. The name of the monitor point
is the name used to identify this data item in the archive. The names of functions that
implement retrieving the associated data are formed by placing the word ‘get’ before the
name of the monitor point. Monitor points do not alter the internal state of the system;
they merely retrieve data. Control commands, on the other hand, do alter the state of the
system. Their results are not inserted into the archive and their name indicates the function
that performs the action. So, their name is not altered in any way; it is the name of the
function to accomplish the action. The command ‘getAverageWindSpeed’ is placed in the
Control worksheet because an asynchronous command alters the state of the system, in the
sense that resources must be allocated and actions scheduled over a long period of time to
perform the function.

The spreadsheet is used as the input to the code generator. Two files are produced: ‘Weath-
erStation.h’ and ‘WeatherStationInterface.c’. The text of these files are in the appendix in
sections 24.3 and 24.4.

First, we will deal with the “.h” file. A structure is defined called ‘WeatherStation’. The
first portion of this structure is exactly the same as the ‘ControlSystem’ structure. Fields
that are unique to the WeatherStation system are appended to the end of this structure.
This way of implementing the WeatherStation structure means that if we have created a
WeatherStation object, i.e. a pointer to a WeatherStation structure, the cast:

ControlSystem* sys = (ControlSystem*)weatherStation;

is always valid. This fact enables us to use a pointer to a WeatherStation object as a
parameter to all of the functions that belong to a ControlSystem described in section 9.
This technique is the means by which a WeatherStation is said to be an ‘extension’ of a
ControlSystem.

Following the definition of the WeatherSystem structure are the definitions of methods that
are unique to the WeatherStation system. These methods, together with those associated
with ControlSystem, constitute the high-level interface to the WeatherSystem system. There
are two constructors: ‘createStandAloneWeatherStation’, which creates a WeatherStation in

24

standalone mode, and ‘createWeatherStation’, which creates a server that implements the
client-server protocol. The first is intended to be used in development and testing. Next
there are three methods that are required to implement actions associated with the state
model. We will say more about those shortly. The remaining methods are all associated
with the monitor points and control commands.

For each monitor point a function definition is generated:

Temperature getTemperature(WeatherStation* this, ControlException* err);

that retrieves the value of that monitor point. There are two additional functions that are
also generated:

Duration getTemperatureInterval(WeatherStation* this);

void setTemperatureInterval(WeatherStation* this, Duration temperatureInterval);

that allow a user to get and set the interval at with that monitor point is sampled. The
remaining function defines the asynchronous method ‘getAverageWindSpeed’:

void getAverageWindSpeed(WeatherStation* this, Duration minutes,

ControlException* err, void (*callback)(WeatherStation*, Speed, ControlException*));

The second file that is generated is ‘WeatherStationInterface.c’. It implements methods for
all constructors and destructors, as well as the methods that get and set sampling intervals
associated with the monitor points6. The constructors merely initialize all fields to their
default values, as specified in the spreadsheet. They also do one other important thing; they
create a log file that is associated with the system. This log file is a text file whose name
is the system name to which is appended the current time (to the nearest millisecond), for
example:

weather1_2010_05_14T17_22_15_968.txt

The remaining methods, ‘getTemperature’, ‘getWindSpeed’, ‘getWindDirection’, ‘getAver-
ageWindSpeed’, and the three action methods required by the state model must be im-
plemented by the WeatherStation application. This brings us to a discussion of the state
model.

The state model that a system is required to implement is shown in Figure 2. This model
and the constraints it implies is fully implemented within the ControlSystem methods. The
only requirement that is imposed on a system is to implement actions required to initialize
the system (‘initializeWeatherStationAction’), shutdown the system (‘shutdownWeatherSta-
tionAction’), and save crucial data in the event it is about to be aborted (‘aboutToBeAbort-
edWeatherStationAction’). These methods are required; but, they do not need to actually
do anything, if this makes sense within the application. The initialization method should
contain whatever actions are required to bring the WeatherStation to an operational state.
The ControlSystem portion of the WeatherStation structure contains function pointers to
these three methods that are initialized by the constructors when the WeatherStation object

6This file also implements various functions that are used internally in implementing the client-server
communications protocol, which are not shown in this example.

25

Figure 2: The Control System state model

is created. There are actually two sets of these function pointers, one for a C system that
uses threads and one for C systems that do not use threads. The reason there are two sets
is that the no-threads case requires an additional callback parameter.

When a WeatherStation object is created it is in the UNDEFINED state. In this state the
only things the have been done are to initialize the fields and create the log file. The first
thing that must be done is to start the system by calling the ‘startSystem’ method. In
the standalone mode this method doesn’t really do anything but in the client-server model
it creates the server sockets and begins to listen for clients requesting to be connected to
the server. At this point the system is in the START state. Next the system is initialized
by calling the ‘initializeSystem’ method. The method performs all actions necessary to
bring the system to an operational state. It is assumed that this method is asynchronous
and will take some time to complete7. At the beginning of the method the system is in
the INITIALIZING state; when it has completed the system is in the INITIALIZED state.
Following these actions, the system is made operational by call the ‘operateSystem’ method.
The system is then in the OPERATIONAL state. The normal course of action to terminate
the system is to call the ‘shutdownSystem’ method, which is intended to shutdown the
system gracefully. However, the system can also be stopped abruptly; before this is done the
‘aboutToAbortSystem’ method is called to allow systems to save any crucial data.

These methods are illustrated in two additional files in the appendix: ‘WeatherStation.c’
and ‘CTestWeatherStation.c’ in sections 24.5 and 24.6. This first corresponds to what would
be implemented by the actual Weather Station application. The second corresponds to a
standalone test program to test some of the basic features of the system.

The ‘WeatherStation.c’ file implements the three action methods, the three functions to
return the values of the monitor points, and the asynchronous command. The test program

7In the client-server mode, as opposed to the standalone mode, a thread is spawned to execute the
initialization actions.

26

performs the following actions. The weather station is created.

WeatherStation* weather1 = createStandaloneWeatherStation ("test");

Then the weather station is started, initialized, and placed into operation. After each oper-
ation the system status is checked for any errors and the current system state is reported.

startSystem(weather1);

initializeSystem(weather1);

operateSystem(weather1);

Then, a few monitor functions are exercised.

ControlException* err = createControlException(weather1);

Temperature t = getTemperature(weather1, err);

Speed s = getWindSpeed(weather1, err);

Angle a = getWindDirection(weather1, err);

The system is then shutdown, stopped and destroyed.

shutdownSystem(weather1);

stopSystem(weather1);

destroyWeatherStation(weather1);

The output from executing the test program is:

WeatherStation created in standalone mode.

WeatherStation state: UNDEFINED

WeatherStation state: STARTED

Executing initializeWeatherStationAction

WeatherStation state: INITIALIZED

WeatherStation state: OPERATIONAL

The temperature is 30.00

The wind speed is 4.00

The wind direction is 0.79

Executing shutdownWeatherStationAction

WeatherStation state: SHUTDOWN

WeatherStation state: STOPPED

WeatherStation destroyed.

The previous discussion implemented the case of a C system implemented using threads.
We now turn to the differences introduced if the case is changed to not use threads8. The
generated “.h” file is the same except for the signatures of the action methods; these all have
callback function pointers.

// Actions associated with state changes

void initializeWeatherStationAction(WeatherStation* , void (*callback)(WeatherStation*));

void shutdownWeatherStationAction(WeatherStation* , void (*callback)(WeatherStation*));

void aboutToAbortWeatherStationAction(WeatherStation* , void (*callback)(WeatherStation*));

8In this case the cell in the System worksheet of the EMSS spreadsheet labeled ‘Implement’ would be
‘C-no-threads’.

27

In the generated file ‘WeatherStationInterface.c’ the only difference is the initialization of
the function pointers to the action methods. The major difference is in how these action
methods are implemented in the application. Each action method is broken into two parts:
the first part saves the system and callback pointers and schedules the task to be done at a
later time.

static void (*CallbackPointer)(WeatherStation*);

static WeatherStation* SystemObject;

void initializeWeatherStationAction(WeatherStation* this, void (*callback)(WeatherStation*)) {

printf("%s\n", "Executing initializeWeatherStationAction");

// Do something to save the system pointer and the callback pointer.

CallbackPointer = callback;

SystemObject = this;

}

void doInitializeWeatherStationAction(WeatherStation* this) {

printf("%s\n", "Executing doInitializeWeatherStationAction");

// Actions to initialize the WeatherStation go here.

CallbackPointer(SystemObject);

}

In the no-threads case the sequence of actions in the test program are:

WeatherStation* weather1 = createStandaloneWeatherStation ("test");

startSystem(weather1);

initializeSystem(weather1);

doInitializeWeatherStationAction(weather1);

operateSystem(weather1);

ControlException* err = createControlException(weather1);

Temperature t = getTemperature(weather1, err);

Speed s = getWindSpeed(weather1, err);

Angle a = getWindDirection(weather1, err);

shutdownSystem(weather1);

doShutdownWeatherStationAction(weather1);

stopSystem(weather1);

destroyWeatherStation(weather1);

The output from executing the no-threads version of the test program is:

WeatherStation created in standalone mode.

WeatherStation state: UNDEFINED

WeatherStation state: STARTED

Executing initializeWeatherStationAction

WeatherStation state: INITIALIZING

Executing doInitializeWeatherStationAction

WeatherStation state: INITIALIZED

WeatherStation state: OPERATIONAL

The temperature is 30.00

The wind speed is 4.00

The wind direction is 0.79

Executing shutdownWeatherStationAction

WeatherStation state: SHUTTINGDOWN

28

Executing doShutdownWeatherStationAction

WeatherStation state: SHUTDOWN

WeatherStation state: STOPPED

WeatherStation destroyed.

29

4 Communications and Monitoring

This section has not been completed.

30

5 Enumerations

The enumerations listed below are C versions of the enumerations documented in the MROI
Monitor and Configuration Database (see Reference [3] in section 23). The declaration of
these enumerations is contained in the file ControlSystem.h listed in the appendix.

5.1 Enumeration: MROIAlertLevel

The alert level indicates the degree of importance attached to the alert. The enumerated
values are ordered in decreasing order of significance.

AlertLevel SEVERE A severe condition has been detected that demands immediate at-
tention.

AlertLevel ERROR An error has occurred that will possibly affect observations.

AlertLevel WARNING A condition has occurred that might affect adversely affect obser-
vations but does not warrant stopping them.

AlertLevel INFO This level is only used to test the mechanism for sending an alert. It is
not inserted into the database and no response is necessary.

5.2 Enumeration: MROIExceptionType

An exception type identifies a type of exception that is thrown during the execution of a
system. This list is intended to be easily extensible as systems are further developed.

ExceptionType UNDEFINED Only used temporarily in creating exceptions as object
created by remote clients.

ExceptionType INVALID REQUEST The request submitted to a server is not valid.

ExceptionType INVALID PARAMETER The request submitted to a server contains
an invalid parameter.

ExceptionType ACTION FAILED A request submitted to a server failed to execute.

ExceptionType REPLY ERROR An error occurred in sending a reply to a client.

ExceptionType OBJECT CREATION EXCEPTION An error occurred in creating
an object.

ExceptionType IO ERROR An I/O error, usually in communication between remote
clients and servers, has occurred.

ExceptionType MEMORY ALLOCATION FAILED Indicates an error allocating
memory.

31

ExceptionType NO ERROR Used in C systems to indeicate the absence of an exception.

ExceptionType NULL POINTER Used in C systems to indicate a null pointer.

ExceptionType BAD READ An I/O error reading some item.

ExceptionType UNEXPECTED EOF An unexpected end-of-file when reading some
item.

ExceptionType BUFFER OVERFLOW A buffer overflow occured when writing some
item.

5.3 Enumeration: MROILogLevel

The log level enumeration is copied from Java’s logging utility. The values are ordered in
decreasing significance, or, another way of looking at it is in increasing level of detail. In
the Java logging utility one can set the log level at a given level and suppress all messages
below that level.

LogLevel SEVERE The highest level, indicating a condition that usually stops execution.

LogLevel WARNING An adverse condition that does not terminate execution.

LogLevel INFO Any significant information relevant to the execution of the system.

LogLevel CONFIG Information relevant to the current configuration of the system, usu-
ally associated with startup conditions.

LogLevel FINE Debugging information at a high level of detail.

LogLevel FINER Debugging information at a medium level of detail.

LogLevel FINEST Debugging information at a low level of detail.

5.4 Enumeration: MROILogType

The log type indicates the type of log message, as opposed to the log level, which is associated
with the level of detail. It is intended to indicate the purpose of the log message. These enu-
merations are used by the process that ingests log messages into the database. For example,
STATE CHANGE, FAULT, and ALERT messages are selected for special treatment during
the ingest process.

LogType UNDEFINED Only used temporarily in creating exceptions as object created by
remote clients.

LogType STATE CHANGE Indicates a change in the state of the object. It may also
be used for changes in the sub-states of a system.

32

LogType ERROR Indicates an error message, which might be an error in a client message
to the system

LogType LOG FILE CREATED Indicates that a log file has been successfully created.

LogType SERVER SOCKET CREATED A server socket has been created.

LogType DATA SOCKET CREATED A data socket has been created.

LogType EXCEPTION A exception has occurred and the message contains the exception.
It may also be used to record a failed client request and the exception that is sent to the
client.

LogType FAULT A fault has occurred and the message contains the fault.

LogType ALERT An alert has occurred and the message contains the alert.

LogType OPERATOR MESSAGE A message has been sent to the telescope operator.

LogType INFO Indicates an information or debugging message.

5.5 Enumeration: MROIMessageType

MessageType is an enumeration of types of messages exchanged between servers and clients.
An enumerated value of MessageType is the first byte of any message format. Messages are
not recorded in the database; this enumeration is only used internally in the communications
software between servers and clients.

MessageType UNKNOWN Not intended to be used.

MessageType SYSTEM IDENTIFICATION Used by both clients and servers to iden-
tify the system.

MessageType SYNCHRONOUS COMMAND Indicates a general synchronous com-
mand sent by a client to a server.

MessageType ASYNCHRONOUS COMMAND Indicates a general asynchronous
command sent by a client to a server.

MessageType EXECUTED Server to client: a command has been executed successfully.

MessageType EXECUTED NULL Server to client: a command has been executed suc-
cessfully but the result was null.

MessageType EXCEPTION Server to client: an executing command threw an excep-
tion.

MessageType ACCEPTED Server to client: an asynchronous command has been ac-
cepted for execution.

33

MessageType MONITOR DATA Indicates monitor data sent from server to client.

MessageType GET SYSTEM TYPE Client to server: get the type of system.

MessageType GET PACKAGE NAME Client to server: get the package name asso-
ciated with the system.

MessageType GET SYSTEM NAME Client to server: get the name of this system.

MessageType GET HOST ADDRESS Client to server: get the address of the com-
puter on which this system is executing.

MessageType GET MAIN PORT Client to server: get the main server port number.

MessageType GET BACKLOG Client to server: get the current value of the backlog
parameter.

MessageType GET SO TIMEOUT Client to server: get the current value of the
so timeout parameter.

MessageType GET LOG FILENAME Client to server: get the name of the log file
currently being used.

MessageType GET SYSTEM STATE Client to server: get the current state of the
system.

MessageType GET DATABASE MANAGER CONNECTION Client to server:
get the parameters used in accessing the database manager.

MessageType GET TELESCOPE OPERATOR CONNECTION Client to server:
get the parameters used in accessing the telescope operator.

MessageType GET FAULT MANAGER CONNECTION Client to server: get the
parameters used in accessing the fault manager.

MessageType BREAK CONNECTION Client to server: break this connection.

MessageType TERMINATE Client to server: terminate the execution of this system.

MessageType TEST Client to server: Used only to test the communications network.

MessageType SET DATABASE MANAGER Client to server: set the parameters
used in accessing the database manager.

MessageType SET TELESCOPE OPERATOR Client to server: set the parameters
used in accessing the telescope operator.

MessageType SET FAULT MANAGER Client to server: set the parameters used in
accessing the fault manager.

MessageType SET SOTIMEOUT Client to server: set the so timeout parameter.

34

MessageType SET LOGLEVEL Client to server: set the loglevel parameter used to se-
lect the logging filter level.

MessageType INITIALIZE SYSTEM Client to server: initialize this system in syn-
chronous mode.

MessageType BEGIN INITIALIZE SYSTEM Client to server: begin the initializa-
tion process, but do not respond as if this were an asynchronous command.

MessageType OPERATE SYSTEM Client to server: place this system in operational
mode.

MessageType DIAGNOSTIC MODE ON Client to server: place this system in diag-
nostic mode.

MessageType DIAGNOSTIC MODE OFF Client to server: place this system back in
operational mode.

MessageType SHUTDOWN SYSTEM Client to server: shut down this system in syn-
chronous mode.

MessageType BEGIN SHUTDOWN SYSTEM Client to server: begin the shut down
process, but do not respond as if this were an asynchronous command.

MessageType ABOUT TO ABORT SYSTEM Client to server: notify this system in
synchronous mode that it is about to be aborted.

MessageType BEGIN ABOUT TO ABORT SYSTEM Client to server: begin the
about to abort process, but do not respond as if this were an asynchronous command.

MessageType STOP SYSTEM Client to server: place this system in the stopped state.

MessageType GET DATAPORT Client to server: get the port number on which this
system reports monitor data.

MessageType INITIALIZE SYSTEM ASYNC Client to server: initialize this system
in asynchronous mode.

MessageType SHUTDOWN SYSTEM ASYNC Client to server: shut down this sys-
tem in asynchronous mode.

MessageType ABOUT TO ABORT SYSTEM ASYNC Client to server: this sys-
tem should execute the about to abort process in asynchronous mode.

MessageType MONITOR ON Client to server: turn data monitoring on.

MessageType MONITOR OFF Client to server: turn data monitoring off.

MessageType IS MONITORING Client to server: is data monitoring currently on?

35

5.6 Enumeration: MROISystemType

The SystemType enumeration is a list of official names of types of systems within the MROI.
All operational instances of systems are instantiations of these basic types. This list of
system types will grow as new systems are added to the database.

SystemType UNKNOWN Not intended to be used.

SystemType Executive The Executive system within the Supervisory System.

SystemType Supervisor The Supervisor system within the Supervisory System.

SystemType FaultManager The Fault Manager system within the Supervisory System.

SystemType DatabaseManager The Database Manager system within the Supervisory
System.

SystemType DataCollector The Data Collector system within the Supervisory System.

SystemType TelescopeOperator The Telescope Operator system within the Supervisory
System.

SystemType OperatorInterface The Operator Interface system within the Supervisory
System.

SystemType UTM The Unit Telescope Mount.

SystemType FTT The Fast Tip-Tilt System.

SystemType SIC The System Integration Camera system.

SystemType WAS The Wide-Field Acquisition System.

SystemType UTE The Unit Telescope Enclosure.

SystemType EnvironmentalMonitoringSystem The Environmental Monitoring Sys-
tem as a whole.

SystemType WeatherStation A weather station within the Environmental Monitoring
System.

5.7 Enumeration: MROISystemState

SystemState is an enumeration of the values of the state model as described in the Supervisory
System. All systems are in one of these states at any time.

SystemState UNDEFINED The state after which a system has merely been created as
a software object.

36

SystemState STARTED The system’s main thread, in which the server listens for remote
clients, has been started but the system has not been initialized.

SystemState INITIALIZING The system is in the process of being initialized.

SystemState INITIALIZED The system has been initialized.

SystemState OPERATIONAL The system is operational.

SystemState DIAGNOSTIC The system is in the diagnostic mode.

SystemState SHUTTINGDOWN The system is in the process of shutting down.

SystemState SHUTDOWN The system has been shut down.

SystemState STOPPED The system has been stopped.

SystemState ABORTING The system is in the process of aborting.

SystemState ABORTED The system has aborted.

5.8 Enumeration: MROIHardwareType

The HardwareType enumeration is a list of official names of types of hardware within the
MROI. All operational instances of hardware are instances of these types. This list of
hardware types will grow as new systems are added to the database.

HardwareType UNKNOWN Not intended to be used.

HardwareType Array An array of unit telescopes.

HardwareType UT A unit telescope.

HardwareType UTM The Unit Telescope Mount hardware.

HardwareType WAS The Wide-Field Acquisition camera.

HardwareType UTE The Unit Telescope Enclosure hardware.

HardwareType STATION The physical station on which a unit telescope resides.

HardwareType FTT The Fast Tip-Tilt hardware.

HardwareType SIC The system integration camera.

HardwareType WeatherStation A weather station.

HardwareType AllSkyCamera The all-sky camera.

37

6 Extended Data Types

The following is a list of items that function as extended data types. These are the C versions
of a list of such items in the MROI Monitor and Configuration Database (see Reference [3]
in section 23). The declaration of these data types are contained in the file ControlSystem.h
listed in the appendix.

All of these items have associated functions that enable them to be written to and read from
data streams, as well as being converted to character strings.

Angle (double) An angle in radians.

AngularRate (double) The rate at which an angle changes in radians per second.

Complex (double complex) A complex number represented as two double precision numbers.

Duration (double) A duration in time in units of nanoseconds.

FComplex (float complex) A complex number represented as two single precision numbers.

Flux (double) Flux in units of Jansky.

Frequency (double) A frequency in units of Hertz.

Humidity (double) Relative humidity.

Length (double) A length in meters.

Pressure (double) Atmospheric pressure.

Speed (double) Speed in meters per second.

Temperature (double) A temperature in units of degrees centigrade.

MROITime (long long int) A time in units of nanoseconds since 2000-01-
01T00:00:0.000000.

MROTime has additional methods to create a time given the year, month, day, hour, minute,
and second. One can also create a time from a FITS-formatted string as well as from the
current system time.

38

7 MCDB Structures

There are two data structures, again from the MROI Monitor and Configuration Database
(see Reference [3] in section 23), that are included for completeness. They are rarely used.
These have associated functions that are constructors, destructors, and that enable them to
be written to and read from data streams, as well as being converted to character strings.

The declaration of these structures and associated functions are contained in the file Con-
trolSystem.h listed in the appendix.

7.1 Float Sample

The FloatSample structure represents the measurement of a generic quantity that can be
represented as a floating point number. The units associated with the measurement are
defined in the monitored property associated with the quantity.

typedef struct {

MROITime time;

float value;

} FloatSample;

7.2 Name Value Pair

The NameValuePair structure represents a named value expressed as a string of characters.

typedef struct {

char* name;

char* value;

} NameValuePair;

39

8 Additional General Methods

There are a several general purpose data structures and functions that are used internally
and included here.

The first of these implements a string buffer.

typedef struct {

int size;

char* buffer;

int mark;

} StringBuffer;

It has the associated functions:

// Create a StringBuffer object of the specified size.

StringBuffer* createStringBuffer(int size);

// Destroy the specified StringBuffer object.

void destroyStringBuffer(StringBuffer* this);

// Append a character string to the specified StringBuffer.

int appendStringBuffer(StringBuffer* this, const char* s);

// Get the current contents of the specified StringBuffer.

char* getStringBuffer(StringBuffer* this);

// Get the current size of the contents of the StringBuffer.

int getSizeStringBuffer(StringBuffer* this);

Other functions are:

// Copy the specified string into a newly allocated space and return that space.

char* createString(char* s, ControlException* status);

// Convert the specified boolean value to a character string.

char* toStringBoolean(bool x);

// Convert the specified byte value to a character string.

char* toStringByte(char x);

// Convert the specified short int value to a character string.

char* toStringShort(short int x);

// Convert the specified long int value to a character string.

char* toStringInt(long int x);

// Convert the specified long long int value to a character string.

char* toStringLong(long long int x);

// Convert the specified float value to a character string.

char* toStringFloat(float x);

// Convert the specified double value to a character string.

char* toStringDouble(double x);

40

9 The ControlSystem Class

There is no description.

9.1 Fields

Fields are private and should not be directly accessed.

• systemType (MROISystemType) The name of this type of system

• packageName (const char*) The name associated with this package

• systemName (const char*) The name of that identifies this instance of the system

• logger (ControlLogger*) The logger associated with this system

• hostAddress (const char*) The address of the host that this system runs on

• mainPort (long int) The main port on this system’s host on which the system listens
for connections

• backlog (long int) The backlog on the ports associated with this system

• soTimeout (long int) The default timeout, in milliseconds, for the accept() function.
This is used after the initial accept and may be reset by the Executive

• dataPort (long int) The data port on this system’s host on which the system listens
for connections to the data port

• serverSocket (MROIServerSocket*) The server socket on the main port

• serverDataSocket (MROIServerSocket*) The server socket on the data port

• telescopeOperatorName (char*) The name of the Telescope Operator system

• telescopeOperatorIPAddress (char*) The IP address of the location of the Tele-
scope Operator system

• telescopeOperatorPort (long int) The port used to connect to the Telescope Oper-
ator system

• databaseManagerName (char*) The name of the Database Manager system

• databaseManagerIPAddress (char*) The IP address of the location of the
Database Manager system

• databaseManagerPort (long int) The port used to connect to the Database Manager
system

41

• faultManagerName (char*) The name of the Fault Manager system

• faultManagerIPAddress (char*) The IP address of the location of the Fault Man-
ager system

• faultManagerPort (long int) The port used to connect to the Fault Manager system

• numberMonitorPoint (long int) The number of monitor points associated with this
system

• monitorPoint (const char**) The names of the monitor points associated with this
system

• numberCommand (long int) The number of commands associated with this system

• command (const char**) The names of commands associated with this system

• systemState (MROISystemState) The current state of the system

• monitoring (bool) Is the system currently producing monitor data?

• status (ControlException*) The exception status associated with this control system

• noThreads (bool) Whether this C system is implemented without using threads

• (void (*initializeAction)(void*)) A pointer to the system’s initialization actions that
uses threads

• (void (*initializeActionNoThread)(void*, void(*)(void*))) A pointer to the system’s
initialization actions that does not use threads

• (void (*shutdownAction)(void*)) A pointer to the system’s shutdown actions that
uses threads

• (void (*shutdownActionNoThread)(void*, void(*)(void*))) A pointer to the system’s
shutdown actions that does not use threads

• (void (*aboutToAbortAction)(void*)) A pointer to the system’s about-to-abort actions
that uses threads

• (void (*aboutToAbortActionNoThread)(void*, void(*)(void*))) A pointer to the sys-
tem’s about-to-abort actions that does not use threads

9.2 Methods for constructing and destroying a ControlSystem

9.2.1 globalError

This method is private and should not be accessed directly.

42

The globalError method is called if an unrecoverable error occurs that cannot be reported
using the exception mechanism, such as encountering a null pointer. This method terminates
the entire program abruptly.

Returns:

• void This method returns nothing.

Parameters:

• message (const char*) A message explaining the global error.

• filename (const char*) The name of the source code file in which the global error
occurred.

• lineNumber (long int) The line number of the source code file in which the global
error occurred.

Exceptions:

• This method terminates the entire program abruptly.

9.2.2 createControlSystem

Constructor: Create a control system.

Returns:

• ControlSystem* A pointer to the newly created ControlSystem object.

Parameters:

• systemType (MROISystemType) The type of system from the enumeration of system
types.

• packageName (const char*) The package name associated with this system.

• systemName (const char*) The name of this system instance.

• hostAddress (const char*) The address of the host on which this system executes.

• mainPort (long int) The main port on the host on which this system listens for
clients.

• dataPort (long int) The data port on the host on which the system listens for con-
nections to the data port.

• backlog (long int) The backlog associated with the number of supported clients.

43

Exceptions:

• If memory allocation for the ControlSystem object fails or

• the ControlSystem object’s ControlException fails to be created, NULL is returned;

• otherwise, the ControlSystem object is created and returned.

• If any input parameter is not valid, the ControlSystem’s exception status is set.

9.2.3 initControlSystem

This method is private and should not be accessed directly.

The initControlSystem is an internal method used to initialize a ControlSystem structure.
It is used by C systems that are extensions of the basic ControlSystem.

Returns:

• void This method does not return anything.

Parameters:

• system (void*) The ControlSystem structure to be initialized.

• systemType (MROISystemType) The type of system from the enumeration of system
types.

• packageName (const char*) The package name associated with this system.

• systemName (const char*) The name of this system instance.

• hostAddress (const char*) The address of the host on which this system executes.

• mainPort (long int) The main port on the host on which this system listens for
clients.

• dataPort (long int) The data port on the host on which the system listens for con-
nections to the data port.

• backlog (long int) The backlog associated with the number of supported clients.

Exceptions:

• If any input parameter is not valid, the ControlSystem’s exception status is set.

44

9.2.4 destroyControlSystem

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*) The ControlSystem object that is to be destroyed.

Exceptions:

• No exceptions are set by this method.

9.3 Methods for handling exceptions

9.3.1 isSystemException

There is no description.

Returns:

• bool Returns true if and only if this ControlSystem’s status indicates an exception
has occurred.

Parameters:

• system (void*) The ControlSystem object

Exceptions:

• We will do exceptions later.

9.3.2 setSystemException

An exception has occurred. Set this ControlSystem’s status to indicate an exception with
the sepcified values.

Returns:

• void This method does not return anything.

Parameters:

45

• system (void*) The ControlSystem object whose status is being set to indicate an
exception.

• type (MROIExceptionType) The enumerated type of exception.

• message (const char*) A message explaining the exception.

• filename (const char*) The name of the source code file in which the exception oc-
curred.

• lineNumber (long int) The number of the line within the source code file at which
the exception occurred.

Exceptions:

• If ‘this’ is null, this method merely returns.

• If this ControlSystem’s status currently indicates an exception, then the method
merely returns.

• If internal space has to be reallocated to hold a long message or filename and memory
allocation fails, the ControlSystem’s status is set and the method merely returns.

9.3.3 clearSystemException

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*) The ControlSystem object whose status is being cleared.

Exceptions:

• We will do exceptions later.

9.3.4 getSystemException

There is no description.

Returns:

• ControlException* The ControlSystem’s exception object.

46

Parameters:

• system (void*) The ControlSystem object

Exceptions:

• We will do exceptions later.

9.4 Methods for sending faults, alerts, and operator messages.

9.4.1 sendMROIFault

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*) The ControlSystem object

• faultName (char*)

• monitoredPropertyName (char*)

• message (char*)

• numberData (int)

• data (char**)

• numberFault (int)

• faultTree (Fault*)

Exceptions:

• We will do exceptions later.

47

9.4.2 sendMROIAlert

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• alertName (char*)

• alertLevel (MROIAlertLevel)

• monitoredPropertyName (char*)

• message (char*)

• fault (Fault)

Exceptions:

• We will do exceptions later.

9.4.3 sendMROIOperatorMessage

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• message (char*)

Exceptions:

• We will do exceptions later.

48

9.5 Methods for setting log characteristics and writing to the log.

A typical entry into the log file is:

FINE: 2009-06-22T17:23:58.233999360 Executive.Executive1 (SHUTTINGDOWN) DEBUG: Main server socket closed.

The order of items within the logging entry is:

• Logging level

• Time in FITS format

• System type

• System name

• State of the system at the time the log message was entered

• Type of log entry

• log message

This entry is entered into the log file as a single line of text.

9.5.1 getLogFilename

There is no description.

Returns:

• char* The full path name of the current log file.

Parameters:

• system (void*)

• message (char*)

Exceptions:

• We will do exceptions later.

49

9.5.2 setLoggerBuffersize

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• buffersize (long int)

Exceptions:

• We will do exceptions later.

9.5.3 setLoggerThreadsOption

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• option (bool)

Exceptions:

• We will do exceptions later.

9.5.4 logSevere

Write a log record indicating a severe problem, a condition that usually stops execution.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• logType (MROILogType)

• message (char*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

50

9.5.5 logWarning

Write a log record indicating an adverse condition that does not terminate execution.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• logType (MROILogType)

• message (char*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

9.5.6 logInfo

Write a log record indicating any significant information relevant to the execution of the
system.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• logType (MROILogType)

• message (char*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

51

9.5.7 logConfig

Write a log record indicating information relevant to the current configuration of the system,
usually associated with startup conditions.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• logType (MROILogType)

• message (char*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

9.5.8 logFine

Write a log record indicating debugging information at a high level of detail.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• logType (MROILogType)

• message (char*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

52

9.5.9 logFiner

Write a log record indicating debugging information at a medium level of detail.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• logType (MROILogType)

• message (char*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

9.5.10 logFinest

Write a log record indicating debugging information at a low level of detail.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• logType (MROILogType)

• message (char*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

53

9.5.11 logCurrentException

Write a ControlException object to the log. This is written as a ‘severe’ log entry.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• exception (ControlException*)

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

9.5.12 getLogger

There is no description.

Returns:

• ControlLogger* Return the current logger.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.6 Methods for accessing the database manager

9.6.1 connectToDatabaseManager

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

54

9.6.2 disconnectFromDatabaseManager

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7 Methods for getting basic system characteristics

9.7.1 getSystemType

There is no description.

Returns:

• MROISystemType Return the type of this system.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7.2 getPackageName

There is no description.

Returns:

• char* Return the package name associated with this system.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

55

9.7.3 getSystemName

There is no description.

Returns:

• char* Return the name of this system.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7.4 getHostAddress

There is no description.

Returns:

• char* Return the host address associated with this system.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7.5 getMainPort

There is no description.

Returns:

• long int Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

56

9.7.6 getDataPort

There is no description.

Returns:

• long int Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7.7 getBacklog

There is no description.

Returns:

• long int Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7.8 getSOTimeout

There is no description.

Returns:

• long int Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

57

9.7.9 getSystemState

There is no description.

Returns:

• MROISystemState Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7.10 getDatabaseManagerConnection

There is no description.

Returns:

• RemoteConnection* Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.7.11 getTelescopeOperatorConnection

There is no description.

Returns:

• RemoteConnection* Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

58

9.7.12 getFaultManagerConnection

There is no description.

Returns:

• RemoteConnection* Return something.

Parameters:

• system (void*)

Exceptions:

• We will do exceptions later.

9.8 Methods for setting basic system characteristics

9.8.1 setDatabaseManager

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• systemName (char*)

• ipAddress (char*)

• port (long int)

Exceptions:

• We will do exceptions later.

59

9.8.2 setTelescopeOperator

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• systemName (char*)

• ipAddress (char*)

• port (long int)

Exceptions:

• We will do exceptions later.

9.8.3 setFaultManager

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• systemName (char*)

• ipAddress (char*)

• port (long int)

Exceptions:

• We will do exceptions later.

60

9.8.4 setSOTimeout

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• timeout (long int)

Exceptions:

• We will do exceptions later.

9.8.5 setLogLevel

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• level (MROILogLevel)

Exceptions:

• We will do exceptions later.

9.9 Methods for implementing the system state model

9.9.1 startSystem

Start the system. The system must be in the UNDEFINED state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

61

9.9.2 initializeSystem

Initialize the system. The system must be in the STARTED or STOPPED state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed and the system is placed in
the STOPPED state.

9.9.3 beginInitializeSystem

Begin the system initialization process but return immediately. The system must be in the
STARTED or STOPPED state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.9.4 operateSystem

Place the system in the operational state. The system must be in the INITIALIZED state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

62

9.9.5 diagnosticModeOn

Place the system in the diagnostic mode. The system must be in the OPERATIONAL state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.9.6 diagnosticModeOff

Place the system in the operational mode. The system must be in the DIAGNOSTIC state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.9.7 shutdownSystem

Shut down the system. The system must be in the OPERATIONAL state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

63

9.9.8 beginShutdownSystem

Begin the system shutdown process but return immediately. The system must be in the
OPERATIONAL state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.9.9 aboutToAbortSystem

The system is about to be aborted; save any crucial data now. The system may be in any
state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.9.10 beginAboutToAbortSystem

The system is about to be aborted. Begin to save any crucial data now; but return imme-
diately. The system may be in any state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

64

9.9.11 stopSystem

Place the system in the stopped state. The system must be in the SHUTDOWN state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.9.12 initializeSystemAsync

Initialize the system asynchronously. The system must be in the STARTED or STOPPED
state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.9.13 shutdownSystemAsync

Shut down the system asynchronously. The system must be in the OPERATIONAL state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

65

9.9.14 aboutToAbortSystemAsync

The system is about to be aborted; save any crucial data asynchronously. The system may
be in any state.

Returns:

• MROISystemState The system state upon completion of this action.

Parameters:

• system (void*)

Exceptions:

• An ControlSystem’s exception is set if this action failed.

9.10 Methods for implementing monitoring

9.10.1 monitorOn

Turn on data monitoring.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

Exceptions:

• An exception is set if this action failed.

9.10.2 monitorOff

Turn off data monitoring.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

Exceptions:

• An exception is set if this action failed.

66

9.10.3 isMonitoring

Turn on data monitoring.

Returns:

• bool Return true if this system is monitoring data; otherwise return false.

Parameters:

• system (void*)

Exceptions:

• An exception is set if this action failed.

9.11 Methods related to communications

9.11.1 breakConnection

There is no description

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

Exceptions:

• An exception is set if this action failed.

9.11.2 terminate

There is no description

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

Exceptions:

• An exception is set if this action failed.

67

9.11.3 test

There is no description

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

Exceptions:

• An exception is set if this action failed.

9.12 Other methods

9.12.1 setControlMonitorPoints

Set the names of the monitor points for this system.

Returns:

• void This method does not return anything.

Parameters:

• system (void*)

• numberMonitorPoint (long int)

• monitorPointName (const char**)

Exceptions:

• An exception is set if this action failed.

9.12.2 setControlCommands

Set the names of the commmands for this system.

Returns:

• void This method does not return anything.

Parameters:

68

• system (void*)

• numberCommand (long int)

• commandName (const char**)

Exceptions:

• An exception is set if this action failed.

69

10 The ControlException Class

The ControlException is an object containing basic data about some exception that has
occurred within a system. It contains the system to which the exception belongs, its type
and time of creation. In addition to a message explaining the exception, this object contains
the name of the source code file and line number of the statement that created the exception.

This ControlException object is created as a “null” exception, indicating that there has
been no exception. An exception is indicated by calling the ‘setException’ method. This
ControlException object may be reused, in the sense that its values may be cleared, using
the ‘clearException’ method, and reset, using the ‘setException’ method again.

A fixed amount of space is allocated for the message (1024 bytes) and filename (512 bytes).
This space is reallocated only if the size of the message or filename exceeds its currently
allocated space. This space is freed when the exception object is destroyed.

For convenience in checking whether an exception has occurred, the method ‘isStatusOK’
returns true is there is no current exception and false if an exception has occurred.

10.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) The system to which this exception belongs.

• type (MROIExceptionType) The enumerated type of exception.

• time (MROITime) The time at which the exception was created.

• filename (char*) The name of the source code file containing the module that created
the exception.

• filenameBuffersize (long int) The size of the area reserved for the filename.

• lineNumber (long int) The line number in the source code file at which the exception
was created.

• message (char*) A message explaining the exception.

• messageBuffersize (long int) The size of the area reserved for the message.

10.2 Methods

10.2.1 createControlException

Constructor: Create a new ControlException object that indicates there is no exception.

Returns:

70

• ControlException* A pointer to the newly created ControlException object.

Parameters:

• system (void*) The ControlSystem to which this exception belongs.

Exceptions:

• If ‘system’ is null, then NULL is returned.

• If there is an error allocating memory, the system’s status is set to indicate an ex-
ception and NULL is returned.

10.2.2 destroyControlException

Destructor: Destroy the specified ControlException object.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlException*) A pointer to the ControlException that is to be destroyed.

Exceptions:

• No exceptions are set by this method.

10.2.3 setException

An exception has occurred. Set this ControlException’s values to the specified parameters.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlException*) The ControlException object whose values are to be set.

• type (MROIExceptionType) The enumerated type of exception.

• message (const char*) A message explaining the exception.

• filename (const char*) The name of the source code file in which the exception oc-
curred.

71

• lineNumber (long int) The number of the line within the source code file at which
the exception occurred.

Exceptions:

• If ‘this’ is null, this method merely returns.

• If this ControlException currently indicates an error, then the system’s status is set
and the method merely returns.

• If internal space has to be reallocated to hold a long message or filename and memory
allocation fails, the system’s status is set and the method merely returns.

10.2.4 readControlException

Read this exception’s values from the specified input stream.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlException*)

• in (SocketInputStream*)

Exceptions:

• If ‘in’ is null, the method does nothing and merely returns.

• If ‘this’ is null, the input stream’s status is set to indicate an exception.

• If ‘in’ currently indicates an exception, the input stream’s socket status is set to
indicate an exception has occurred.

• If an error occurrs reading any item of data from the input stream, the input stream’s
status is set.

• If memory has to be reallocated and there is an allocation failure, the ControlExcep-
tion’s status is set.

72

10.2.5 writeControlException

Write this ContorlException’s values to the specified output stream.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlException*)

• out (SocketOutputStream*)

Exceptions:

• If ‘out’ is null, the method doe nothing and merely returns.

• If ‘this’ is null, the output stream’s status is set to indicate an exception.

• If an error occurrs writing any item of data to the output stream, the output stream’s
status is set and the method returns.

10.2.6 toStringControlException

Convert this exception to a character string

Returns:

• char* A character string containing the values of this ControlException.

Parameters:

• this (ControlException*) The ControlException object that is to be converted.

Exceptions:

• No exceptions are set by this method.

10.2.7 isStatusOK

Is this current exception’s status clear, i.e. is there an exception?

Returns:

• bool True if and only if no exception has occurred.

73

Parameters:

• this (ControlException*) The ControlException object whose status is being exam-
ined.

Exceptions:

• No exceptions are set by this method.

10.2.8 clearException

Clear this exception’s values

Returns:

• void This method does not return anything.

Parameters:

• this (ControlException*) The ControlException object whose values are being
cleared.

Exceptions:

• No exceptions are set by this method.

10.2.9 getExceptionType

Return this ControlException’s type

Returns:

• MROIExceptionType The enumerated exception type of this ControlException ob-
ject.

Parameters:

• this (ControlException*) The ControlException object whose exception type is being
returned.

Exceptions:

• No exceptions are set by this method.

74

10.2.10 getExceptionMessage

Return this ControlException’s message

Returns:

• const char* The message of this ControlException object.

Parameters:

• this (ControlException*) The ControlException object whose message is being re-
turned.

Exceptions:

• No exceptions are set by this method.

10.2.11 getExceptionTime

Return this ControlException’s time of creation

Returns:

• MROITime The time this ControlException object was created.

Parameters:

• this (ControlException*) The ControlException object whose time of creation is being
returned.

Exceptions:

• No exceptions are set by this method.

10.2.12 getExceptionFilename

Return this ControlException’s filename

Returns:

• const char* The source code filename that created this ControlException object.

Parameters:

• this (ControlException*) The ControlException object whose filename is being re-
turned.

Exceptions:

• No exceptions are set by this method.

75

10.2.13 getExceptionLine

Return this ControlException’s line number

Returns:

• long int The line number of the source code filename that created this ControlExcep-
tion object.

Parameters:

• this (ControlException*) The ControlException object whose line number is being re-
turned.

Exceptions:

• No exceptions are set by this method.

76

11 The MROISocket Class

There is no description.

11.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) The control system to which this MROISocket belongs.

• ipAddress (const char*) This socket’s IP address.

• port (long int) This socket’s port number.

• receiveBuffersize (long int) The size, in bytes, of the buffer to receive data.

• sendBuffersize (long int) The size, in bytes, of the buffer to send data.

• soTimeout (long int) The soTimeout parameter associated with this socket.

• socketFD (long int) The socketFD parameter associated with this socket.

• in (SocketInputStream*) The input stream buffer.

• out (SocketOutputStream*) The output stream buffer.

• status (ControlException*) The exception that is association with this socket.

11.2 Methods

11.2.1 createMROISocket

There is no description.

Returns:

• MROISocket*

Parameters:

• system (ControlSystem*)

• port (long int)

• receiveBuffersize (long int)

• sendBuffersize (long int)

• soTimeout (long int)

Exceptions:

•

77

11.2.2 destroyMROISocket

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (MROISocket*)

Exceptions:

•

11.2.3 getSocketInputStream

There is no description.

Returns:

• SocketInputStream*

Parameters:

• this (MROISocket*)

Exceptions:

•

11.2.4 getSocketOutputStream

There is no description.

Returns:

• SocketOutputStream*

Parameters:

• this (MROISocket*)

Exceptions:

•

78

12 The MROIServerSocket Class

There is no description.

12.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) The control system to which this MROISocket belongs.

• ipAddress (const char*) This socket’s IP address.

• port (long int) This socket’s port number.

• backlog (long int) The backlog parameter associated with this socket.

• soServerTimeout (long int) The soTimeout parameter associated with this socket.

• status (ControlException*) The exception that is association with this socket.

12.2 Methods

12.2.1 createMROIServerSocket

There is no description.

Returns:

• MROIServerSocket*

Parameters:

• system (ControlSystem*)

• port (long int)

• backlog (long int)

• soServerTimeout (long int)

Exceptions:

•

79

12.2.2 destroyMROIServerSocket

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (MROIServerSocket*)

Exceptions:

•

12.2.3 acceptMROIServerSocket

There is no description.

Returns:

• MROISocket*

Parameters:

• this (MROIServerSocket*)

• receiveBuffersize (long int)

• sendBuffersize (long int)

• soTimeout (long int)

Exceptions:

•

80

13 The SocketInputStream Class

There is no description.

13.1 Fields

Fields are private and should not be accessed directly.

• socket (MROISocket*) The socket to which this SocketInputStream belongs.

• buffersize (long int) The size of the buffer (default is 64K).

• buffer (char*) The allocated buffer.

• size (long int) The current number of bytes in the buffer.

• mark (long int) The current position of the read pointer.

• status (ControlException*) The status associated with any operation.

13.2 Methods

13.2.1 createSocketInputStream

There is no description.

Returns:

• SocketInputStream*

Parameters:

• socket (MROISocket*)

Exceptions:

•

13.2.2 destroySocketInputStream

There is no description.

Returns:

• void This method does not return anything.

81

Parameters:

• this (SocketInputStream*)

Exceptions:

•

13.2.3 receiveSocketInputStream

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

Exceptions:

•

13.2.4 readBoolean

There is no description.

Returns:

• bool

Parameters:

• in (SocketInputStream*)

Exceptions:

•

82

13.2.5 readByte

There is no description.

Returns:

• char

Parameters:

• in (SocketInputStream*)

Exceptions:

•

13.2.6 readShort

There is no description.

Returns:

• short int

Parameters:

• in (SocketInputStream*)

Exceptions:

•

13.2.7 readInt

There is no description.

Returns:

• long int

Parameters:

• in (SocketInputStream*)

Exceptions:

•

83

13.2.8 readLong

There is no description.

Returns:

• long long int

Parameters:

• in (SocketInputStream*)

Exceptions:

•

13.2.9 readFloat

There is no description.

Returns:

• float

Parameters:

• in (SocketInputStream*)

Exceptions:

•

13.2.10 readDouble

There is no description.

Returns:

• double

Parameters:

• in (SocketInputStream*)

Exceptions:

•

84

13.2.11 readString

There is no description.

Returns:

• char*

Parameters:

• in (SocketInputStream*)

Exceptions:

•

13.2.12 readEnum

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

Exceptions:

•

13.2.13 readBooleanArray

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (bool*)

Exceptions:

•

85

13.2.14 readByteArray

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (char*)

Exceptions:

•

13.2.15 readShortArray

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (short int*)

Exceptions:

•

13.2.16 readIntArray

There is no description.

Returns:

• int

86

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (long int*)

Exceptions:

•

13.2.17 readLongArray

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (long long int*)

Exceptions:

•

13.2.18 readFloatArray

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (float*)

Exceptions:

•

87

13.2.19 readDoubleArray

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (double*)

Exceptions:

•

13.2.20 readStringArray

There is no description.

Returns:

• int

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (char**)

Exceptions:

•

13.2.21 readEnumArray

There is no description.

Returns:

• int

88

Parameters:

• in (SocketInputStream*)

• maxNumber (int)

• data (int*)

Exceptions:

•

89

14 The SocketOutputStream Class

There is no description.

14.1 Fields

Fields are private and should not be accessed directly.

• socket (MROISocket*) The socket to which this SocketOutputStream belongs.

• buffersize (long int) The size of the buffer (default is 64K).

• buffer (char*) The allocated buffer.

• mark (long int) The current position of the write pointer.

• status (ControlException*) The status associated with any operation.

14.2 Methods

14.2.1 createSocketOutputStream

There is no description.

Returns:

• SocketOutputStream*

Parameters:

• socket (MROISocket*)

Exceptions:

•

14.2.2 destroySocketOutputStream

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (SocketOutputStream*)

Exceptions:

•

90

14.2.3 sendSocketOutputStream

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

Exceptions:

•

14.2.4 writeBoolean

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (bool)

Exceptions:

•

14.2.5 writeByte

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (char)

Exceptions:

•

91

14.2.6 writeShort

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (short int)

Exceptions:

•

14.2.7 writeInt

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (long int)

Exceptions:

•

14.2.8 writeLong

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (long long int)

Exceptions:

•

92

14.2.9 writeFloat

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (float)

Exceptions:

•

14.2.10 writeDouble

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (double)

Exceptions:

•

14.2.11 writeString

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (const char*)

Exceptions:

•

93

14.2.12 writeEnum

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• data (int)

Exceptions:

•

14.2.13 writeBooleanArray

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (bool*)

Exceptions:

•

14.2.14 writeByteArray

There is no description.

Returns:

• int

Parameters:

94

• out (SocketOutputStream*)

• number (int)

• data (char*)

Exceptions:

•

14.2.15 writeShortArray

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (short int*)

Exceptions:

•

14.2.16 writeIntArray

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (long int*)

Exceptions:

•

95

14.2.17 writeLongArray

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (long long int*)

Exceptions:

•

14.2.18 writeFloatArray

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (float*)

Exceptions:

•

14.2.19 writeDoubleArray

There is no description.

Returns:

• int

96

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (double*)

Exceptions:

•

14.2.20 writeStringArray

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (char**)

Exceptions:

•

14.2.21 writeEnumArray

There is no description.

Returns:

• int

Parameters:

• out (SocketOutputStream*)

• number (int)

• data (int*)

Exceptions:

•

97

15 The Fault Class

There is no description.

15.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) description

• faultName (char*) description

• faultTime (MROITime) description

• stateAtTimeOfFault (MROISystemState) description

• monitoredPropertyName (char*) description

• message (char*) description

• numberData (long int) description

• data (char**) description

• numberFault (long int) description

• faultTree (Fault**) description

15.2 Methods

15.2.1 createFault

There is no description.

Returns:

• Fault*

Parameters:

• system (ControlSystem*)

• faultName (char*)

• stateAtTimeOfFault (MROISystemState)

• monitoredPropertyName (char*)

98

• message (char*)

• numberData (int)

• data (char**)

• numberFault (int)

• faultTree (Fault**)

Exceptions:

•

15.2.2 destroyFault

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (Fault*)

Exceptions:

•

15.2.3 writeFault

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (Fault*)

• out (SocketOutputStream*)

Exceptions:

•

99

15.2.4 toStringFault

There is no description.

Returns:

• char*

Parameters:

• this (Fault*)

Exceptions:

•

100

16 The Alert Class

There is no description.

16.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) description

• systemType (MROISystemType) description

• systemName (char*) description

• systemState (MROISystemState) description

• alertName (char*) description

• alertLevel (MROIAlertLevel) description

• alertTime (MROITime) description

• monitoredPropertyName (char*) description

• message (char*) description

• fault (Fault*) description

16.2 Methods

16.2.1 createAlert

There is no description.

Returns:

• Alert*

Parameters:

• system (ControlSystem*) description

• alertName (char*) description

• alertLevel (MROIAlertLevel) description

• monitoredPropertyName (char*) description

101

• message (char*) description

• fault (Fault) description

Exceptions:

•

16.2.2 destroyAlert

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (Alert*)

Exceptions:

•

16.2.3 writeAlert

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (Alert*)

• out (SocketOutputStream*)

Exceptions:

•

102

16.2.4 toStringAlert

There is no description.

Returns:

• char*

Parameters:

• this (Alert*)

Exceptions:

•

103

17 The Identification Class

There is no description.

17.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) description

• toDo (int) TODO

17.2 Methods

17.2.1 createIdentification

There is no description.

Returns:

• Identification*

Parameters: There are no parameters for this method.

Exceptions:

•

17.2.2 destroyIdentification

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (Identification*)

Exceptions:

•

104

17.2.3 readIdentification

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• in (SocketInputStream*)

• data (Identification*)

Exceptions:

•

17.2.4 writeIdentification

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• out (SocketOutputStream*)

• data (Identification*)

Exceptions:

•

17.2.5 toStringIdentification

There is no description.

Returns:

• char*

Parameters:

• this (Identification*)

Exceptions:

•

105

18 The OperatorMessage Class

There is no description.

18.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) description

• systemId (Identification*) description

• time (MROITime) description

• message (char*) description

18.2 Methods

18.2.1 createOperatorMessage

There is no description.

Returns:

• OperatorMessage*

Parameters:

• system (ControlSystem*)

• message (char*)

Exceptions:

•

18.2.2 destroyOperatorMessage

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (OperatorMessage*)

Exceptions:

•

106

18.2.3 writeOperatorMessage

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (OperatorMessage*)

• out (SocketOutputStream*)

Exceptions:

•

18.2.4 toStringOperatorMessage

There is no description.

Returns:

• char*

Parameters:

• this (OperatorMessage*)

Exceptions:

•

107

19 The RemoteConnection Class

There is no description.

19.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) description

• toDo (int) TODO

19.2 Methods

19.2.1 createRemoteConnection

There is no description.

Returns:

• RemoteConnection*

Parameters: There are no parameters for this method.

Exceptions:

•

19.2.2 destroyRemoteConnection

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (RemoteConnection*)

Exceptions:

•

108

19.2.3 readRemoteConnection

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• in (SocketInputStream*)

• data (RemoteConnection*)

Exceptions:

•

19.2.4 writeRemoteConnection

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• out (SocketOutputStream*)

• data (RemoteConnection*)

Exceptions:

•

19.2.5 toStringRemoteConnection

There is no description.

Returns:

• char*

Parameters:

• this (RemoteConnection*)

Exceptions:

•

109

20 The Client Class

There is no description.

20.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) description

• toDo (int) TODO

20.2 Methods

20.2.1 createClient

There is no description.

Returns:

• Client*

Parameters: There are no parameters for this method.

Exceptions:

•

20.2.2 destroyClient

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• this (Client*)

Exceptions:

•

110

20.2.3 readClient

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• in (SocketInputStream*)

• data (Client*)

Exceptions:

•

20.2.4 writeClient

There is no description.

Returns:

• void This method does not return anything.

Parameters:

• out (SocketOutputStream*)

• data (Client*)

Exceptions:

•

20.2.5 toStringClient

There is no description.

Returns:

• char*

Parameters:

• this (Client*)

Exceptions:

•

111

21 The ControlLogger Class

The ControlLogger is a class that creates an object that manages a log file. The model is
Java’s logger. See java.util.logging.Logger.

The public methods are: ‘logSevere’, ‘logWarning’, ‘logInfo’, ‘logConfig’, ‘logFine’, ‘logFiner’,
‘logFinest’, ‘logException’.

The logger is created to write each log entry directly to the file and to assume that the
application is not using threads. These two assumptions may be changed by setting a buffer
size (method ‘setBufferSize’) and by setting the threads option (method ‘setThreads’).

21.1 Fields

Fields are private and should not be accessed directly.

• system (ControlSystem*) The control system to which this logger belongs.

• logFilename (char*) The log file name associated with this system.

• logFile (long int) The file handle of the log file.

• status (ControlException*) The current status of the logger.

• isThreads (bool) If ‘isThreads’ is true, each write is protected by a lock.

• buffersize (long int) The size of the buffer that holds the log records.

• buffer (char *) The allocated buffer, if any, to hold the log records.

21.2 Methods

21.2.1 createControlLogger

Constructor: The createControlLogger method creates a ControlLogger object, as well as
creating the log file and opening it. It also creates a ControlException object; this status
object is always set after any operation.

The ControlLogger object is created to write each log entry directly to the file and to assume
that the application is not using threads. If these options are to be changed, then the
‘setBuffersize’ or ‘setThreads’ methods must be called prior to writing any log records.

Returns:

• ControlLogger* A pointer to the ControlLogger object that has been newly created.

Parameters:

112

• filename (char*) The full path name of the log file to be created.

• system (ControlSystem*) The ControlSystem to which this log file belongs.

Exceptions:

• If the ’system’ parameter is null, NULL is returned and nothing else happens.

• If there is any error in allocating memory or in creating and opening the log file, the
system’s status is set and NULL is returned.

21.2.2 destroyControlLogger

Destructor: Free all memory allocated to this ControlLogger and set ‘this’ to NULL.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlLogger*) The ControlLogger object that is to be destroyed.

Exceptions:

• No exceptions are set by this method.

21.2.3 setBuffersize

Allocate a buffer for the log records. If the buffer is allocated, writes to the log are written
to the buffer. The buffer is written to the file only when there is an overflow condition. If
the buffersize parameter is 0, each write to the log is written directly to the file.

The ‘setBuffersize’ method may be called at any time during the execution of the application.
If there is an existing buffer, its contents are written to the log file and the old buffer is freed
before allocating a new buffer.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlLogger*) The ControlLogger object whose buffer is being allocated.

• buffersize (long int) The size, in bytes, of the buffer being allocated to the Control-
Logger.

113

Exceptions:

• If the buffersize parameter is less than 0, this ControlException’s status is set.

• If there is an error allocating memory for the buffer, this ControlException’s status
is set.

21.2.4 setThreads

Set the ‘threads’ option. This options indicates that there are threads in the application.
The result is that there is a lock that must be acquired in performing a write to the log.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlLogger*) The ControlLogger object whose ‘threads’ option is being set to
true.

Exceptions:

• No exceptions are set by this method.

21.2.5 writeToLog

This method is private and should not be accessed directly.

The ‘ writeToLog’ method is an internal method designed to write log records to the log file.
It should not be used by an application. It is used by all of the public methods that are used
to write particular types of log records. If the ControlLogger’s status indicates an error, this
method sets the ControlSystem’s status and returns; nothing is written to the file.

Returns:

• void This method does not return anything.

Parameters:

• this (ControlLogger*)

• logLevel (MROILogLevel)

• logType (MROILogType)

• message (char*)

114

Exceptions:

• If there is an error writing to the log, the ControlLogger’s status is set.

• If there is an attempt to write to the log when the ControlLogger’s status indicates
an exception, nothing is written to the file and the system’s status is set.

115

22 Change History

22.1 Version 0.1

Version 0.1 is the initial version of this document.

Version 0.2 added an example system, its interface definition via spreadsheets and generated
code. It also included implementation and a test program.

116

23 Additional information

References

[1] A. Farris, MROI Supervisory System A Conceptual Design Overview, internal document
(INT-409-ENG-0010 rev 1.1, WP 4.09.03, MROI Supervisory System), September 14,
2009.

[2] A. Farris, The Design of an MROI System, internal document (INT-409-ENG-0020 rev
1.0, WP 4.09.01, MROI Software Engineering), September 13, 2009.

[3] A. Farris, The MROI Monitor and Configuration Database, internal document (INT-409-
ENG-0030 rev 1.3, WP 4.09.04, MROI Data Handling System), February 8, 2010.

[4] A. Farris, RDM: A software system based on the relational data model for supporting the
definition and collection of data for scientific applications, internal document (INT-409-
ENG-0040 rev 1.0, WP 4.09.01, MROI Software Engineering), September 17, 2009.

[5] A. Farris, Xpand: A Java-based code generation framework, internal document (INT-409-
ENG-0050 rev 1.0, WP 4.09.01, MROI Software Engineering), January 20, 2010.

[6] A. Farris, MROI Data Collector, internal document (INT-409-ENG-0060 rev 0.1, WP
4.09.03, MROI Supervisory System), February 5, 2010.

117

24 Appendix

24.1 ControlSystem.h

#ifndef MROI_CONTROL_SYSTEM_H

#define MROI_CONTROL_SYSTEM_H

/**

* New Mexico Institute of Mining and Technology

* 801 Leroy Place

* Socorro, NM 87801 USA

* (c) 2009, 2010 by New Mexico Institute of Mining and Technology.

* (c) Copyright 2009, 2010 by New Mexico Institute of Mining and Technology.

* All rights reserved.

*

* This library is free software; you can redistribute it and/or modify it under

* the terms of the GNU Lesser General Public License as published by the Free

* Software Foundation; either version 2.1 of the License, or (at your option)

* any later version.

*

* This library is distributed in the hope that it will be useful, but WITHOUT

* ANY WARRANTY, without even the implied warranty of MERCHANTABILITY or FITNESS

* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more

* details.

*

* You should have received a copy of the GNU Lesser General Public License

* along with this library; if not, write to the Free Software Foundation, Inc.,

* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

*

* File MROIControlSystem.h

*

* ///

* // WARNING! DO NOT MODIFY THIS FILE!

* //

* // This is generated code! Do not modify this file.

* // Any changes will be lost when the file is re-generated.

* //

* ///

*

*/

include <stdbool.h>

include <complex.h>

/**

**

* Forward declarations for structures used in Control System

**

*/

typedef struct _ControlException ControlException;

typedef struct _MROISocket MROISocket;

typedef struct _MROIServerSocket MROIServerSocket;

typedef struct _SocketInputStream SocketInputStream;

118

typedef struct _SocketOutputStream SocketOutputStream;

typedef struct _Fault Fault;

typedef struct _Alert Alert;

typedef struct _Identification Identification;

typedef struct _OperatorMessage OperatorMessage;

typedef struct _RemoteConnection RemoteConnection;

typedef struct _Client Client;

typedef struct _ControlLogger ControlLogger;

typedef struct _ControlSystem ControlSystem;

/*

**

* Enumerations for Project MROI Data Model MCDB

**

*/

/*

* Enumeration AlertLevel

*/

typedef enum {

AlertLevel_SEVERE = 0 ,

AlertLevel_ERROR ,

AlertLevel_WARNING ,

AlertLevel_INFO

} MROIAlertLevel;

char* MROIAlertLevelName[4];

long int MROIAlertLevelNumber;

char* toStringMROIAlertLevel(MROIAlertLevel x);

/*

* Enumeration ExceptionType

*/

typedef enum {

ExceptionType_UNDEFINED = 0 ,

ExceptionType_INVALID_REQUEST ,

ExceptionType_INVALID_PARAMETER ,

ExceptionType_ACTION_FAILED ,

ExceptionType_REPLY_ERROR ,

ExceptionType_OBJECT_CREATION_EXCEPTION ,

ExceptionType_IO_ERROR ,

ExceptionType_MEMORY_ALLOCATION_FAILED ,

ExceptionType_NO_ERROR ,

ExceptionType_NULL_POINTER ,

ExceptionType_BAD_READ ,

ExceptionType_UNEXPECTED_EOF ,

ExceptionType_BUFFER_OVERFLOW

} MROIExceptionType;

char* MROIExceptionTypeName[13];

long int MROIExceptionTypeNumber;

char* toStringMROIExceptionType(MROIExceptionType x);

/*

* Enumeration LogLevel

*/

119

typedef enum {

LogLevel_SEVERE = 0 ,

LogLevel_WARNING ,

LogLevel_INFO ,

LogLevel_CONFIG ,

LogLevel_FINE ,

LogLevel_FINER ,

LogLevel_FINEST

} MROILogLevel;

char* MROILogLevelName[7];

long int MROILogLevelNumber;

char* toStringMROILogLevel(MROILogLevel x);

/*

* Enumeration LogType

*/

typedef enum {

LogType_UNDEFINED = 0 ,

LogType_STATE_CHANGE ,

LogType_ERROR ,

LogType_LOG_FILE_CREATED ,

LogType_SERVER_SOCKET_CREATED ,

LogType_DATA_SOCKET_CREATED ,

LogType_EXCEPTION ,

LogType_FAULT ,

LogType_ALERT ,

LogType_OPERATOR_MESSAGE ,

LogType_INFO

} MROILogType;

char* MROILogTypeName[11];

long int MROILogTypeNumber;

char* toStringMROILogType(MROILogType x);

/*

* Enumeration MessageType

*/

typedef enum {

MessageType_UNKNOWN = 0 ,

MessageType_SYSTEM_IDENTIFICATION ,

MessageType_SYNCHRONOUS_COMMAND ,

MessageType_ASYNCHRONOUS_COMMAND ,

MessageType_EXECUTED ,

MessageType_EXECUTED_NULL ,

MessageType_EXCEPTION ,

MessageType_ACCEPTED ,

MessageType_MONITOR_DATA ,

MessageType_GET_SYSTEM_TYPE ,

MessageType_GET_PACKAGE_NAME ,

MessageType_GET_SYSTEM_NAME ,

MessageType_GET_HOST_ADDRESS ,

MessageType_GET_MAIN_PORT ,

MessageType_GET_BACKLOG ,

MessageType_GET_SO_TIMEOUT ,

MessageType_GET_LOG_FILENAME ,

120

MessageType_GET_SYSTEM_STATE ,

MessageType_GET_DATABASE_MANAGER_CONNECTION ,

MessageType_GET_TELESCOPE_OPERATOR_CONNECTION ,

MessageType_GET_FAULT_MANAGER_CONNECTION ,

MessageType_BREAK_CONNECTION ,

MessageType_TERMINATE ,

MessageType_TEST ,

MessageType_SET_DATABASE_MANAGER ,

MessageType_SET_TELESCOPE_OPERATOR ,

MessageType_SET_FAULT_MANAGER ,

MessageType_SET_SOTIMEOUT ,

MessageType_SET_LOGLEVEL ,

MessageType_INITIALIZE_SYSTEM ,

MessageType_BEGIN_INITIALIZE_SYSTEM ,

MessageType_OPERATE_SYSTEM ,

MessageType_DIAGNOSTIC_MODE_ON ,

MessageType_DIAGNOSTIC_MODE_OFF ,

MessageType_SHUTDOWN_SYSTEM ,

MessageType_BEGIN_SHUTDOWN_SYSTEM ,

MessageType_ABOUT_TO_ABORT_SYSTEM ,

MessageType_BEGIN_ABOUT_TO_ABORT_SYSTEM ,

MessageType_STOP_SYSTEM ,

MessageType_GET_DATAPORT ,

MessageType_INITIALIZE_SYSTEM_ASYNC ,

MessageType_SHUTDOWN_SYSTEM_ASYNC ,

MessageType_ABOUT_TO_ABORT_SYSTEM_ASYNC ,

MessageType_MONITOR_ON ,

MessageType_MONITOR_OFF ,

MessageType_IS_MONITORING

} MROIMessageType;

char* MROIMessageTypeName[46];

long int MROIMessageTypeNumber;

char* toStringMROIMessageType(MROIMessageType x);

/*

* Enumeration SystemType

*/

typedef enum {

SystemType_UNKNOWN = 0 ,

SystemType_Executive ,

SystemType_Supervisor ,

SystemType_FaultManager ,

SystemType_DatabaseManager ,

SystemType_DataCollector ,

SystemType_TelescopeOperator ,

SystemType_OperatorInterface ,

SystemType_UTM ,

SystemType_FTT ,

SystemType_SIC ,

SystemType_WAS ,

SystemType_UTE ,

SystemType_EnvironmentalMonitoringSystem ,

SystemType_WeatherStation

} MROISystemType;

121

char* MROISystemTypeName[15];

long int MROISystemTypeNumber;

char* toStringMROISystemType(MROISystemType x);

/*

* Enumeration SystemState

*/

typedef enum {

SystemState_UNDEFINED = 0 ,

SystemState_STARTED ,

SystemState_INITIALIZING ,

SystemState_INITIALIZED ,

SystemState_OPERATIONAL ,

SystemState_DIAGNOSTIC ,

SystemState_SHUTTINGDOWN ,

SystemState_SHUTDOWN ,

SystemState_STOPPED ,

SystemState_ABORTING ,

SystemState_ABORTED

} MROISystemState;

char* MROISystemStateName[11];

long int MROISystemStateNumber;

char* toStringMROISystemState(MROISystemState x);

/*

* Enumeration HardwareType

*/

typedef enum {

HardwareType_UNKNOWN = 0 ,

HardwareType_Array ,

HardwareType_UT ,

HardwareType_UTM ,

HardwareType_WAS ,

HardwareType_UTE ,

HardwareType_STATION ,

HardwareType_FTT ,

HardwareType_SIC ,

HardwareType_WeatherStation ,

HardwareType_AllSkyCamera

} MROIHardwareType;

char* MROIHardwareTypeName[11];

long int MROIHardwareTypeNumber;

char* toStringMROIHardwareType(MROIHardwareType x);

/*

* Extended data types for Project MROI

*/

/**

* Angle

*/

122

typedef double Angle;

Angle createAngle (double angleInRadians);

Angle readAngle(SocketInputStream* in);

void writeAngle (SocketOutputStream* out, Angle data);

char* toStringAngle (Angle this);

/**

* AngularRate

*/

typedef double AngularRate;

AngularRate createAngularRate (double rateInRadiansPerSecond);

AngularRate readAngularRate(SocketInputStream* in);

void writeAngularRate (SocketOutputStream* out, AngularRate data);

char* toStringAngularRate (AngularRate this);

/**

* Complex

*/

typedef double complex Complex;

Complex createComplex (double re, double im);

Complex readComplex(SocketInputStream* in);

void writeComplex (SocketOutputStream* out, Complex data);

char* toStringComplex (Complex this);

/**

* Duration

*/

typedef long long int Duration;

Duration createDuration (long long int nanoseconds);

Duration readDuration(SocketInputStream* in);

void writeDuration (SocketOutputStream* out, Duration data);

char* toStringDuration (Duration this);

/**

* FComplex

*/

typedef float complex FComplex;

FComplex createFComplex (float re, float im);

FComplex readFComplex(SocketInputStream* in);

void writeFComplex (SocketOutputStream* out, FComplex data);

char* toStringFComplex (FComplex this);

/**

* Flux

*/

typedef double Flux;

Flux createFlux (double flux);

Flux readFlux(SocketInputStream* in);

void writeFlux (SocketOutputStream* out, Flux data);

char* toStringFlux (Flux this);

/**

* Frequency

*/

123

typedef double Frequency;

Frequency createFrequency (double frequencyInHertz);

Frequency readFrequency(SocketInputStream* in);

void writeFrequency (SocketOutputStream* out, Frequency data);

char* toStringFrequency (Frequency this);

/**

* Humidity

*/

typedef double Humidity;

Humidity createHumidity (double humidity);

Humidity readHumidity(SocketInputStream* in);

void writeHumidity (SocketOutputStream* out, Humidity data);

char* toStringHumidity (Humidity this);

/**

* Length

*/

typedef double Length;

Length createLength (double lengthInMeters);

Length readLength(SocketInputStream* in);

void writeLength (SocketOutputStream* out, Length data);

char* toStringLength (Length this);

/**

* Pressure

*/

typedef double Pressure;

Pressure createPressure (double pressure);

Pressure readPressure(SocketInputStream* in);

void writePressure (SocketOutputStream* out, Pressure data);

char* toStringPressure (Pressure this);

/**

* Speed

*/

typedef double Speed;

Speed createSpeed (double speedInMetersPerSecond);

Speed readSpeed(SocketInputStream* in);

void writeSpeed (SocketOutputStream* out, Speed data);

char* toStringSpeed (Speed this);

/**

* Temperature

*/

typedef double Temperature;

Temperature createTemperature (double temperatureInDegC);

Temperature readTemperature(SocketInputStream* in);

void writeTemperature (SocketOutputStream* out, Temperature data);

char* toStringTemperature (Temperature this);

/**

* MROITime

*/

124

typedef long long int MROITime;

MROITime createMROITime (short int year, short int month, short int day,

short int hr, short int min, double sec, ControlException* status);

MROITime readMROITime(SocketInputStream* in);

void writeMROITime (SocketOutputStream* out, MROITime data);

char* toStringMROITime (MROITime this);

MROITime createTimeFITS(char *t, ControlException* status);

MROITime createTimeCurrent();

MROITime createTimeRaw(long long int t);

/*

**

* Structures for Project MROI Data Model MCDB

**

*/

/**

* FloatSample

*

* The FloatSample structure represents the measurement of a generic quantity

* that can be represented as a floating point number. The units associated

* with the measurement are defined in the monitored property associated with

* the quantity.

*/

typedef struct {

MROITime time;

float value;

} FloatSample;

FloatSample* createFloatSample(MROITime time, float value);

void destroyFloatSample(FloatSample* this);

FloatSample* readFloatSample(SocketInputStream* in);

void writeFloatSample(SocketOutputStream* out, FloatSample* data);

char* toStringFloatSample(FloatSample* this);

/**

* NameValuePair

*

* The NameValuePair structure represents a named value expressed as a string

* of characters.

*/

typedef struct {

char* name;

char* value;

} NameValuePair;

NameValuePair* createNameValuePair(char* name, char* value);

void destroyNameValuePair(NameValuePair* this);

NameValuePair* readNameValuePair(SocketInputStream* in);

void writeNameValuePair(SocketOutputStream* out, NameValuePair* data);

char* toStringNameValuePair(NameValuePair* this);

125

/*

* Other general methods

*/

typedef struct {

int size;

char* buffer;

int mark;

} StringBuffer;

StringBuffer* createStringBuffer(int size);

void destroyStringBuffer(StringBuffer* this);

int appendStringBuffer(StringBuffer* this, const char* s);

char* getStringBuffer(StringBuffer* this);

int getSizeStringBuffer(StringBuffer* this);

char* createString(char*s, ControlException* status);

char* toStringBoolean(bool x);

char* toStringByte(char x);

char* toStringShort(short int x);

char* toStringInt(long int x);

char* toStringLong(long long x);

char* toStringFloat(float x);

char* toStringDouble(double x);

/**

**

* Class: ControlException

**

*

* The ControlException is an object containing basic data about some exception

* that has occurred within a system. It contains the system to which the

* exception belongs, its type and time of creation. In addition to a message

* explaining the exception, this object contains the name of the source code file

* and line number of the statement that created the exception.

*

* This ControlException object is created as a "null" exception, indicating that

* there has been no exception. An exception is indicated by calling the

* ‘setException’ method. This ControlException object may be reused, in the

* sense that its values may be cleared, using the ‘clearException’ method, and

* reset, using the ‘setException’ method again.

*

* A fixed amount of space is allocated for the message (1024 bytes) and filename

* (512 bytes). This space is reallocated only if the size of the message or

* filename exceeds its currently allocated space. This space is freed when the

* exception object is destroyed.

*

* For convenience in checking whether an exception has occurred, the method

* ‘isStatusOK’ returns true is there is no current exception and false if an

* exception has occurred.

*

*/

struct _ControlException {

// The system to which this exception belongs.

ControlSystem* system;

126

// The enumerated type of exception.

MROIExceptionType type;

// The time at which the exception was created.

MROITime time;

// The name of the source code file containing the module that created the

// exception.

char* filename;

// The size of the area reserved for the filename.

long int filenameBuffersize;

// The line number in the source code file at which the exception was created.

long int lineNumber;

// A message explaining the exception.

char* message;

// The size of the area reserved for the message.

long int messageBuffersize;

};

// Constructor: Create a new ControlException object that indicates there is no

// exception.

ControlException* createControlException (void* system);

// Destructor: Destroy the specified ControlException object.

void destroyControlException (ControlException* this);

// An exception has occurred. Set this ControlException’s values to the specified

// parameters.

void setException (ControlException* this,

MROIExceptionType type,

const char* message,

const char* filename,

long int lineNumber);

// Read this exception’s values from the specified input stream.

void readControlException (ControlException* this,

SocketInputStream* in);

// Write this ContorlException’s values to the specified output stream.

void writeControlException (ControlException* this,

SocketOutputStream* out);

// Convert this exception to a character string

char* toStringControlException (ControlException* this);

// Is this current exception’s status clear, i.e. is there an exception?

bool isStatusOK (ControlException* this);

// Clear this exception’s values

void clearException (ControlException* this);

// Return this ControlException’s type

MROIExceptionType getExceptionType (ControlException* this);

// Return this ControlException’s message

const char* getExceptionMessage (ControlException* this);

127

// Return this ControlException’s time of creation

MROITime getExceptionTime (ControlException* this);

// Return this ControlException’s filename

const char* getExceptionFilename (ControlException* this);

// Return this ControlException’s line number

long int getExceptionLine (ControlException* this);

/**

**

* Class: MROISocket

**

*

* There is no description.

*

*/

struct _MROISocket {

// The control system to which this MROISocket belongs.

ControlSystem* system;

// This socket’s IP address.

const char* ipAddress;

// This socket’s port number.

long int port;

// The size, in bytes, of the buffer to receive data.

long int receiveBuffersize;

// The size, in bytes, of the buffer to send data.

long int sendBuffersize;

// The soTimeout parameter associated with this socket.

long int soTimeout;

// The socketFD parameter associated with this socket.

long int socketFD;

// The input stream buffer.

SocketInputStream* in;

// The output stream buffer.

SocketOutputStream* out;

// The exception that is association with this socket.

ControlException* status;

};

// There is no description.

MROISocket* createMROISocket (ControlSystem* system,

long int port,

long int receiveBuffersize,

long int sendBuffersize,

long int soTimeout);

// There is no description.

void destroyMROISocket (MROISocket* this);

// There is no description.

SocketInputStream* getSocketInputStream (MROISocket* this);

128

// There is no description.

SocketOutputStream* getSocketOutputStream (MROISocket* this);

/**

**

* Class: MROIServerSocket

**

*

* There is no description.

*

*/

struct _MROIServerSocket {

// The control system to which this MROISocket belongs.

ControlSystem* system;

// This socket’s IP address.

const char* ipAddress;

// This socket’s port number.

long int port;

// The backlog parameter associated with this socket.

long int backlog;

// The soTimeout parameter associated with this socket.

long int soServerTimeout;

// The exception that is association with this socket.

ControlException* status;

};

// There is no description.

MROIServerSocket* createMROIServerSocket (ControlSystem* system,

long int port,

long int backlog,

long int soServerTimeout);

// There is no description.

void destroyMROIServerSocket (MROIServerSocket* this);

// There is no description.

MROISocket* acceptMROIServerSocket (MROIServerSocket* this,

long int receiveBuffersize,

long int sendBuffersize,

long int soTimeout);

/**

**

* Class: SocketInputStream

**

*

* There is no description.

*

*/

struct _SocketInputStream {

// The socket to which this SocketInputStream belongs.

129

MROISocket* socket;

// The size of the buffer (default is 64K).

long int buffersize;

// The allocated buffer.

char* buffer;

// The current number of bytes in the buffer.

long int size;

// The current position of the read pointer.

long int mark;

// The status associated with any operation.

ControlException* status;

};

// There is no description.

SocketInputStream* createSocketInputStream (MROISocket* socket);

// There is no description.

void destroySocketInputStream (SocketInputStream* this);

// There is no description.

int receiveSocketInputStream (SocketInputStream* in);

// There is no description.

bool readBoolean (SocketInputStream* in);

// There is no description.

char readByte (SocketInputStream* in);

// There is no description.

short int readShort (SocketInputStream* in);

// There is no description.

long int readInt (SocketInputStream* in);

// There is no description.

long long int readLong (SocketInputStream* in);

// There is no description.

float readFloat (SocketInputStream* in);

// There is no description.

double readDouble (SocketInputStream* in);

// There is no description.

char* readString (SocketInputStream* in);

// There is no description.

int readEnum (SocketInputStream* in);

// There is no description.

int readBooleanArray (SocketInputStream* in,

int maxNumber,

bool* data);

130

// There is no description.

int readByteArray (SocketInputStream* in,

int maxNumber,

char* data);

// There is no description.

int readShortArray (SocketInputStream* in,

int maxNumber,

short int* data);

// There is no description.

int readIntArray (SocketInputStream* in,

int maxNumber,

long int* data);

// There is no description.

int readLongArray (SocketInputStream* in,

int maxNumber,

long long int* data);

// There is no description.

int readFloatArray (SocketInputStream* in,

int maxNumber,

float* data);

// There is no description.

int readDoubleArray (SocketInputStream* in,

int maxNumber,

double* data);

// There is no description.

int readStringArray (SocketInputStream* in,

int maxNumber,

char** data);

// There is no description.

int readEnumArray (SocketInputStream* in,

int maxNumber,

int* data);

/**

**

* Class: SocketOutputStream

**

*

* There is no description.

*

*/

struct _SocketOutputStream {

// The socket to which this SocketOutputStream belongs.

MROISocket* socket;

// The size of the buffer (default is 64K).

long int buffersize;

131

// The allocated buffer.

char* buffer;

// The current position of the write pointer.

long int mark;

// The status associated with any operation.

ControlException* status;

};

// There is no description.

SocketOutputStream* createSocketOutputStream (MROISocket* socket);

// There is no description.

void destroySocketOutputStream (SocketOutputStream* this);

// There is no description.

int sendSocketOutputStream (SocketOutputStream* out);

// There is no description.

int writeBoolean (SocketOutputStream* out,

bool data);

// There is no description.

int writeByte (SocketOutputStream* out,

char data);

// There is no description.

int writeShort (SocketOutputStream* out,

short int data);

// There is no description.

int writeInt (SocketOutputStream* out,

long int data);

// There is no description.

int writeLong (SocketOutputStream* out,

long long int data);

// There is no description.

int writeFloat (SocketOutputStream* out,

float data);

// There is no description.

int writeDouble (SocketOutputStream* out,

double data);

// There is no description.

int writeString (SocketOutputStream* out,

const char* data);

// There is no description.

int writeEnum (SocketOutputStream* out,

int data);

// There is no description.

132

int writeBooleanArray (SocketOutputStream* out,

int number,

bool* data);

// There is no description.

int writeByteArray (SocketOutputStream* out,

int number,

char* data);

// There is no description.

int writeShortArray (SocketOutputStream* out,

int number,

short int* data);

// There is no description.

int writeIntArray (SocketOutputStream* out,

int number,

long int* data);

// There is no description.

int writeLongArray (SocketOutputStream* out,

int number,

long long int* data);

// There is no description.

int writeFloatArray (SocketOutputStream* out,

int number,

float* data);

// There is no description.

int writeDoubleArray (SocketOutputStream* out,

int number,

double* data);

// There is no description.

int writeStringArray (SocketOutputStream* out,

int number,

char** data);

// There is no description.

int writeEnumArray (SocketOutputStream* out,

int number,

int* data);

/**

**

* Class: Fault

**

*

* There is no description.

*

*/

struct _Fault {

133

// description

ControlSystem* system;

// description

char* faultName;

// description

MROITime faultTime;

// description

MROISystemState stateAtTimeOfFault;

// description

char* monitoredPropertyName;

// description

char* message;

// description

long int numberData;

// description

char** data;

// description

long int numberFault;

// description

Fault** faultTree;

};

// There is no description.

Fault* createFault (ControlSystem* system,

char* faultName,

MROISystemState stateAtTimeOfFault,

char* monitoredPropertyName,

char* message,

int numberData,

char** data,

int numberFault,

Fault** faultTree);

// There is no description.

void destroyFault (Fault* this);

// There is no description.

void writeFault (Fault* this,

SocketOutputStream* out);

// There is no description.

char* toStringFault (Fault* this);

/**

**

* Class: Alert

**

*

* There is no description.

*

*/

struct _Alert {

// description

134

ControlSystem* system;

// description

MROISystemType systemType;

// description

char* systemName;

// description

MROISystemState systemState;

// description

char* alertName;

// description

MROIAlertLevel alertLevel;

// description

MROITime alertTime;

// description

char* monitoredPropertyName;

// description

char* message;

// description

Fault* fault;

};

// There is no description.

Alert* createAlert (ControlSystem* system,

char* alertName,

MROIAlertLevel alertLevel,

char* monitoredPropertyName,

char* message,

Fault fault);

// There is no description.

void destroyAlert (Alert* this);

// There is no description.

void writeAlert (Alert* this,

SocketOutputStream* out);

// There is no description.

char* toStringAlert (Alert* this);

/**

**

* Class: Identification

**

*

* There is no description.

*

*/

struct _Identification {

// description

ControlSystem* system;

// TODO

int toDo;

};

135

// There is no description.

Identification* createIdentification ();

// There is no description.

void destroyIdentification (Identification* this);

// There is no description.

void readIdentification (SocketInputStream* in,

Identification* data);

// There is no description.

void writeIdentification (SocketOutputStream* out,

Identification* data);

// There is no description.

char* toStringIdentification (Identification* this);

/**

**

* Class: OperatorMessage

**

*

* There is no description.

*

*/

struct _OperatorMessage {

// description

ControlSystem* system;

// description

Identification* systemId;

// description

MROITime time;

// description

char* message;

};

// There is no description.

OperatorMessage* createOperatorMessage (ControlSystem* system,

char* message);

// There is no description.

void destroyOperatorMessage (OperatorMessage* this);

// There is no description.

void writeOperatorMessage (OperatorMessage* this,

SocketOutputStream* out);

// There is no description.

char* toStringOperatorMessage (OperatorMessage* this);

/**

136

**

* Class: RemoteConnection

**

*

* There is no description.

*

*/

struct _RemoteConnection {

// description

ControlSystem* system;

// TODO

int toDo;

};

// There is no description.

RemoteConnection* createRemoteConnection ();

// There is no description.

void destroyRemoteConnection (RemoteConnection* this);

// There is no description.

void readRemoteConnection (SocketInputStream* in,

RemoteConnection* data);

// There is no description.

void writeRemoteConnection (SocketOutputStream* out,

RemoteConnection* data);

// There is no description.

char* toStringRemoteConnection (RemoteConnection* this);

/**

**

* Class: Client

**

*

* There is no description.

*

*/

struct _Client {

// description

ControlSystem* system;

// TODO

int toDo;

};

// There is no description.

Client* createClient ();

// There is no description.

void destroyClient (Client* this);

// There is no description.

137

void readClient (SocketInputStream* in,

Client* data);

// There is no description.

void writeClient (SocketOutputStream* out,

Client* data);

// There is no description.

char* toStringClient (Client* this);

/**

**

* Class: ControlLogger

**

*

* The ControlLogger is a class that creates an object that manages a log file.

* The model is Java’s logger. See java.util.logging.Logger.

*

* The public methods are: ‘logSevere’, ‘logWarning’, ‘logInfo’, ‘logConfig’,

* ‘logFine’, ‘logFiner’, ‘logFinest’, ‘logException’.

*

* The logger is created to write each log entry directly to the file and to

* assume that the application is not using threads. These two assumptions may be

* changed by setting a buffer size (method ‘setBufferSize’) and by setting the

* threads option (method ‘setThreads’).

*

*/

struct _ControlLogger {

// The control system to which this logger belongs.

ControlSystem* system;

// The log file name associated with this system.

char* logFilename;

// The file handle of the log file.

long int logFile;

// The current status of the logger.

ControlException* status;

// If ‘isThreads’ is true, each write is protected by a lock.

bool isThreads;

// The size of the buffer that holds the log records.

long int buffersize;

// The allocated buffer, if any, to hold the log records.

char * buffer;

};

// Constructor: The createControlLogger method creates a ControlLogger object, as

// well as creating the log file and opening it. It also creates a

// ControlException object; this status object is always set after any operation.

//

// The ControlLogger object is created to write each log entry directly to the

// file and to assume that the application is not using threads. If these options

// are to be changed, then the ‘setBuffersize’ or ‘setThreads’ methods must be

// called prior to writing any log records.

ControlLogger* createControlLogger (char* filename,

138

ControlSystem* system);

// Destructor: Free all memory allocated to this ControlLogger and set ‘this’ to

// NULL.

void destroyControlLogger (ControlLogger* this);

// Allocate a buffer for the log records. If the buffer is allocated, writes to

// the log are written to the buffer. The buffer is written to the file only

// when there is an overflow condition. If the buffersize parameter is 0, each

// write to the log is written directly to the file.

//

// The ‘setBuffersize’ method may be called at any time during the execution of

// the application. If there is an existing buffer, its contents are written to

// the log file and the old buffer is freed before allocating a new buffer.

void setBuffersize (ControlLogger* this,

long int buffersize);

// Set the ‘threads’ option. This options indicates that there are threads in the

// application. The result is that there is a lock that must be acquired in

// performing a write to the log.

void setThreads (ControlLogger* this);

// The ‘_writeToLog’ method is an internal method designed to write log records to

// the log file. It should not be used by an application. It is used by all of

// the public methods that are used to write particular types of log records. If

// the ControlLogger’s status indicates an error, this method sets the

// ControlSystem’s status and returns; nothing is written to the file.

void _writeToLog (ControlLogger* this,

MROILogLevel logLevel,

MROILogType logType,

char* message);

/**

**

* Class: ControlSystem

**

*

* There is no description.

*

*/

struct _ControlSystem {

// The name of this type of system

MROISystemType systemType;

// The name associated with this package

const char* packageName;

// The name of that identifies this instance of the system

const char* systemName;

// The logger associated with this system

ControlLogger* logger;

// The address of the host that this system runs on

const char* hostAddress;

// The main port on this system’s host on which the system listens for connections

long int mainPort;

139

// The backlog on the ports associated with this system

long int backlog;

// The default timeout, in milliseconds, for the accept() function. This is used

// after the initial accept and may be reset by the Executive

long int soTimeout;

// The data port on this system’s host on which the system listens for connections

// to the data port

long int dataPort;

// The server socket on the main port

MROIServerSocket* serverSocket;

// The server socket on the data port

MROIServerSocket* serverDataSocket;

// The name of the Telescope Operator system

char* telescopeOperatorName;

// The IP address of the location of the Telescope Operator system

char* telescopeOperatorIPAddress;

// The port used to connect to the Telescope Operator system

long int telescopeOperatorPort;

// The name of the Database Manager system

char* databaseManagerName;

// The IP address of the location of the Database Manager system

char* databaseManagerIPAddress;

// The port used to connect to the Database Manager system

long int databaseManagerPort;

// The name of the Fault Manager system

char* faultManagerName;

// The IP address of the location of the Fault Manager system

char* faultManagerIPAddress;

// The port used to connect to the Fault Manager system

long int faultManagerPort;

// The number of monitor points associated with this system

long int numberMonitorPoint;

// The names of the monitor points associated with this system

const char** monitorPoint;

// The number of commands associated with this system

long int numberCommand;

// The names of commands associated with this system

const char** command;

// The current state of the system

MROISystemState systemState;

// Is the system currently producing monitor data?

bool monitoring;

// The exception status associated with this control system

ControlException* status;

// Whether this C system is implemented without using threads

bool noThreads;

// A pointer to the system’s initialization actions that uses threads

void (*initializeAction)(void*) ;

// A pointer to the system’s initialization actions that does not use threads

void (*initializeActionNoThread)(void*, void(*)(void*)) ;

// A pointer to the system’s shutdown actions that uses threads

void (*shutdownAction)(void*) ;

// A pointer to the system’s shutdown actions that does not use threads

void (*shutdownActionNoThread)(void*, void(*)(void*)) ;

140

// A pointer to the system’s about-to-abort actions that uses threads

void (*aboutToAbortAction)(void*) ;

// A pointer to the system’s about-to-abort actions that does not use threads

void (*aboutToAbortActionNoThread)(void*, void(*)(void*)) ;

};

// The globalError method is called if an unrecoverable error occurs that cannot

// be reported using the exception mechanism, such as encountering a null

// pointer. This method terminates the entire program abruptly.

void _globalError (const char* message,

const char* filename,

long int lineNumber);

// Constructor: Create a control system.

ControlSystem* createControlSystem (MROISystemType systemType,

const char* packageName,

const char* systemName,

const char* hostAddress,

long int mainPort,

long int dataPort,

long int backlog);

// The _initControlSystem is an internal method used to initialize a ControlSystem

// structure. It is used by C systems that are extensions of the basic

// ControlSystem.

void _initControlSystem (void* system,

MROISystemType systemType,

const char* packageName,

const char* systemName,

const char* hostAddress,

long int mainPort,

long int dataPort,

long int backlog);

// There is no description.

void destroyControlSystem (void* system);

// There is no description.

bool isSystemException (void* system);

// An exception has occurred. Set this ControlSystem’s status to indicate an

// exception with the sepcified values.

void setSystemException (void* system,

MROIExceptionType type,

const char* message,

const char* filename,

long int lineNumber);

// There is no description.

void clearSystemException (void* system);

// There is no description.

char* getSystemExceptionMessage (void* system);

141

// There is no description.

ControlException* getSystemException (void* system);

// There is no description.

void sendMROIFault (void* system,

char* faultName,

char* monitoredPropertyName,

char* message,

int numberData,

char** data,

int numberFault,

Fault* faultTree);

// There is no description.

void sendMROIAlert (void* system,

char* alertName,

MROIAlertLevel alertLevel,

char* monitoredPropertyName,

char* message,

Fault fault);

// There is no description.

void sendMROIOperatorMessage (void* system,

char* message);

// There is no description.

char* getLogFilename (void* system,

char* message);

// There is no description.

void setLoggerBuffersize (void* system,

long int buffersize);

// There is no description.

void setLoggerThreadsOption (void* system,

bool option);

// Write a log record indicating a severe problem, a condition that usually stops

// execution.

void logSevere (void* system,

MROILogType logType,

char* message);

// Write a log record indicating an adverse condition that does not terminate

// execution.

void logWarning (void* system,

MROILogType logType,

char* message);

// Write a log record indicating any significant information relevant to the

// execution of the system.

void logInfo (void* system,

MROILogType logType,

char* message);

142

// Write a log record indicating information relevant to the current configuration

// of the system, usually associated with startup conditions.

void logConfig (void* system,

MROILogType logType,

char* message);

// Write a log record indicating debugging information at a high level of detail.

void logFine (void* system,

MROILogType logType,

char* message);

// Write a log record indicating debugging information at a medium level of detail.

void logFiner (void* system,

MROILogType logType,

char* message);

// Write a log record indicating debugging information at a low level of detail.

void logFinest (void* system,

MROILogType logType,

char* message);

// Write a ControlException object to the log. This is written as a ‘severe’ log

// entry.

void logCurrentException (void* system,

ControlException* exception);

// There is no description.

ControlLogger* getLogger (void* system);

// There is no description.

void connectToDatabaseManager (void* system);

// There is no description.

void disconnectFromDatabaseManager (void* system);

// There is no description.

MROISystemType getSystemType (void* system);

// There is no description.

char* getPackageName (void* system);

// There is no description.

char* getSystemName (void* system);

// There is no description.

char* getHostAddress (void* system);

// There is no description.

long int getMainPort (void* system);

// There is no description.

long int getDataPort (void* system);

143

// There is no description.

long int getBacklog (void* system);

// There is no description.

long int getSOTimeout (void* system);

// There is no description.

MROISystemState getSystemState (void* system);

// There is no description.

RemoteConnection* getDatabaseManagerConnection (void* system);

// There is no description.

RemoteConnection* getTelescopeOperatorConnection (void* system);

// There is no description.

RemoteConnection* getFaultManagerConnection (void* system);

// There is no description.

void setDatabaseManager (void* system,

char* systemName,

char* ipAddress,

long int port);

// There is no description.

void setFaultManager (void* system,

char* systemName,

char* ipAddress,

long int port);

// There is no description.

void setTelescopeOperator (void* system,

char* systemName,

char* ipAddress,

long int port);

// There is no description.

void setSOTimeout (void* system,

long int timeout);

// There is no description.

void setLogLevel (void* system,

MROILogLevel level);

// Start the system. The system must be in the UNDEFINED state.

MROISystemState startSystem (void* system);

// This method is only used for C systems implemented with no threads. It is the

// callback method in the asynchronous method to the initializeAction method of

// the system.

void initializeSystemReturn (void* system);

// Initialize the system. The system must be in the STARTED or STOPPED state.

MROISystemState initializeSystem (void* system);

144

// Begin the system initialization process but return immediately. The system

// must be in the STARTED or STOPPED state.

MROISystemState beginInitializeSystem (void* system);

// Place the system in the operational state. The system must be in the

// INITIALIZED state.

MROISystemState operateSystem (void* system);

// Place the system in the diagnostic mode. The system must be in the OPERATIONAL

// state.

MROISystemState diagnosticModeOn (void* system);

// Place the system in the operational mode. The system must be in the DIAGNOSTIC

// state.

MROISystemState diagnosticModeOff (void* system);

// This method is only used for C systems implemented with no threads. It is the

// callback method in the asynchronous method to the shutdownAction method of the

// system.

void shutdownSystemReturn (void* system);

// Shut down the system. The system must be in the OPERATIONAL state.

MROISystemState shutdownSystem (void* system);

// Begin the system shutdown process but return immediately. The system must be

// in the OPERATIONAL state.

MROISystemState beginShutdownSystem (void* system);

// This method is only used for C systems implemented with no threads. It is the

// callback method in the asynchronous method to the aboutToAbortAction method of

// the system. The system is placed in the ABORTED state.

void aboutToAbortSystemReturn (void* system);

// The system is about to be aborted; save any crucial data now. The system may

// be in any state.

MROISystemState aboutToAbortSystem (void* system);

// The system is about to be aborted. Begin to save any crucial data now; but

// return immediately. The system may be in any state.

MROISystemState beginAboutToAbortSystem (void* system);

// Place the system in the stopped state. The system must be in the SHUTDOWN

// state.

MROISystemState stopSystem (void* system);

// Initialize the system asynchronously. The system must be in the STARTED or

// STOPPED state.

MROISystemState initializeSystemAsync (void* system);

// Shut down the system asynchronously. The system must be in the OPERATIONAL

// state.

MROISystemState shutdownSystemAsync (void* system);

145

// The system is about to be aborted; save any crucial data asynchronously. The

// system may be in any state.

MROISystemState aboutToAbortSystemAsync (void* system);

// Turn on data monitoring.

void monitorOn (void* system);

// Turn off data monitoring.

void monitorOff (void* system);

// Turn on data monitoring.

bool isMonitoring (void* system);

// There is no description

void breakConnection (void* system);

// There is no description

void terminate (void* system);

// There is no description

void test (void* system);

// Set the names of the monitor points for this system.

void setControlMonitorPoints (void* system,

long int numberMonitorPoint,

const char** monitorPointName);

// Set the names of the commmands for this system.

void setControlCommands (void* system,

long int numberCommand,

const char** commandName);

#endif

146

24.2 EMSS spreadsheet

The spreadsheets defining the interface to the example of the Weather Station within the
EMSS system are shown in Figures 3 through 7.

147

Figure 3: EMSS System spreadsheet

148

Figure 4: EMSS Monitor spreadsheet

Figure 5: EMSS Fault spreadsheet

149

Figure 6: EMSS Control spreadsheet

Figure 7: EMSS Parameters spreadsheet

150

24.3 Generated code for file: WeatherStation.h

#ifndef MROI_WeatherStation_H

#define MROI_WeatherStation_H

#include <MROIControlSystem.h>

typedef struct _WeatherStation WeatherStation;

struct _WeatherStation {

// This prefix is exactly the same as ControlSystem, which

// enables us to use ’WeatherStation*’ as ’ControlSystem*’.

// The name of this type of system

MROISystemType systemType;

// The name associated with this package

const char* packageName;

// The name of that identifies this instance of the system

const char* systemName;

// The logger associated with this system

ControlLogger* logger;

// The address of the host that this system runs on

const char* hostAddress;

// The main port on this system’s host on which the system listens for connections

long int mainPort;

// The backlog on the ports associated with this system

long int backlog;

// The default timeout, in milliseconds, for the accept() function. This is used

// after the initial accept and may be reset by the Executive

long int soTimeout;

// The data port on this system’s host on which the system listens for connections

// to the data port

long int dataPort;

// The server socket on the main port

MROIServerSocket* serverSocket;

// The server socket on the data port

MROIServerSocket* serverDataSocket;

// The name of the Telescope Operator system

char* telescopeOperatorName;

// The IP address of the location of the Telescope Operator system

char* telescopeOperatorIPAddress;

// The port used to connect to the Telescope Operator system

long int telescopeOperatorPort;

// The name of the Database Manager system

char* databaseManagerName;

// The IP address of the location of the Database Manager system

char* databaseManagerIPAddress;

// The port used to connect to the Database Manager system

long int databaseManagerPort;

// The name of the Fault Manager system

char* faultManagerName;

// The IP address of the location of the Fault Manager system

char* faultManagerIPAddress;

// The port used to connect to the Fault Manager system

151

long int faultManagerPort;

// The number of monitor points associated with this system

long int numberMonitorPoint;

// The names of the monitor points associated with this system

const char** monitorPoint;

// The number of commands associated with this system

long int numberCommand;

// The names of commands associated with this system

const char** command;

// The current state of the system

MROISystemState systemState;

// Is the system currently producing monitor data?

bool monitoring;

// The exception status associated with this control system

ControlException* status;

bool noThreads;

// A pointer to the system’s initialization actions

void (*initializeAction)(void*) ;

void (*initializeActionNoThread)(void*, void(*)(void*));

// A pointer to the system’s shutdown actions

void (*shutdownAction)(void*) ;

void (*shutdownActionNoThread)(void*, void(*)(void*));

// A pointer to the system’s about-to-abort actions

void (*aboutToAbortAction)(void*) ;

void (*aboutToAbortActionNoThread)(void*, void(*)(void*)) ;

// The following data items are unique to a WeatherStation system.

// archiving interval in seconds for current temperature in C

Duration temperatureInterval;

// archiving interval in seconds for current wind speed in m/sec

Duration windSpeedInterval;

// archiving interval in seconds for current wind direction in radians

Duration windDirectionInterval;

// the name of the internal file in which the weather data are stored

char* weatherFilename;

// the file handle associated with the file

long int weatherFile;

};

// Constructor and destructor

WeatherStation* createStandaloneWeatherStation(char* systemName);

WeatherStation* createWeatherStation(char* systemName, char* hostAddress,

long int mainPort, long int dataPort, long int backlog);

void destroyWeatherStation(WeatherStation* this);

// Actions associated with state changes

void initializeWeatherStationAction(WeatherStation* this);

void shutdownWeatherStationAction(WeatherStation* this);

void aboutToAbortWeatherStationAction(WeatherStation* this);

// Monitor point: Temperature

Temperature getTemperature(WeatherStation* this, ControlException* err);

// Monitor point: WindSpeed

152

Speed getWindSpeed(WeatherStation* this, ControlException* err);

// Monitor point: WindDirection

Angle getWindDirection(WeatherStation* this, ControlException* err);

// Monitor point: TemperatureInterval

Duration getTemperatureInterval(WeatherStation* this);

// Monitor point: WindSpeedInterval

Duration getWindSpeedInterval(WeatherStation* this);

// Monitor point: WindDirectionInterval

Duration getWindDirectionInterval(WeatherStation* this);

// Control Command: setTemperatureInterval

void setTemperatureInterval(WeatherStation* this, Duration temperatureInterval);

// Control Command: setWindSpeedInterval

void setWindSpeedInterval(WeatherStation* this, Duration windSpeedInterval);

// Control Command: setWindDirectionInterval

void setWindDirectionInterval(WeatherStation* this, Duration windDirectionInterval);

// Control Command: getAverageWindSpeed

void getAverageWindSpeed(WeatherStation* this, Duration minutes,

ControlException* err, void (*callback)(WeatherStation*, Speed, ControlException*));

#endif

153

24.4 Generated code for file: WeatherStationInterface.c

include <WeatherStation.h>

include <stdlib.h>

include <string.h>

typedef void (*StateActionPointer)(void*);

WeatherStation* createStandaloneWeatherStation(char* systemName) {

WeatherStation* this = malloc(sizeof(WeatherStation));

if (this == NULL)

_globalError("Cannot allocate memory", __FILE__, __LINE__);

_initControlSystem(this, SystemType_WeatherStation, "", systemName, NULL, 0, 0, 0);

if (this->status == NULL) {

free(this);

_globalError("Cannot allocate memory", __FILE__, __LINE__);

}

this->noThreads = false;

this->initializeAction = (StateActionPointer)initializeWeatherStationAction;

this->shutdownAction = (StateActionPointer)shutdownWeatherStationAction;

this->aboutToAbortAction = (StateActionPointer)aboutToAbortWeatherStationAction;

this->initializeActionNoThread = NULL;

this->shutdownActionNoThread = NULL;

this->aboutToAbortActionNoThread = NULL;

this->temperatureInterval = 5000000000LL;

this->windSpeedInterval = 5000000000LL;

this->windDirectionInterval = 5000000000LL;

this->weatherFilename = "";

this->weatherFile = 0;

return this;

}

WeatherStation* createWeatherStation(char* systemName, char* hostAddress,

long int mainPort, long int dataPort, long int backlog) {

WeatherStation* this = malloc(sizeof(WeatherStation));

if (this == NULL)

_globalError("Cannot allocate memory", __FILE__, __LINE__);

_initControlSystem((ControlSystem*)this, SystemType_WeatherStation, "",

systemName, hostAddress, mainPort, dataPort, backlog);

if (this->status == NULL) {

free(this);

_globalError("Cannot allocate memory", __FILE__, __LINE__);

}

this->noThreads = false;

this->initializeAction = (StateActionPointer)initializeWeatherStationAction;

this->shutdownAction = (StateActionPointer)shutdownWeatherStationAction;

this->aboutToAbortAction = (StateActionPointer)aboutToAbortWeatherStationAction;

this->initializeActionNoThread = NULL;

this->shutdownActionNoThread = NULL;

154

this->aboutToAbortActionNoThread = NULL;

this->temperatureInterval = 5000000000LL;

this->windSpeedInterval = 5000000000LL;

this->windDirectionInterval = 5000000000LL;

this->weatherFilename = "";

this->weatherFile = 0;

return this;

}

void destroyWeatherStation(WeatherStation* this) {

// If there is anything we allocated in the constructor, we should free it now.

destroyControlSystem(this);

}

// Monitor point: TemperatureInterval

Duration getTemperatureInterval(WeatherStation* this) {

return this->temperatureInterval;

}

// Monitor point: WindSpeedInterval

Duration getWindSpeedInterval(WeatherStation* this) {

return this->windSpeedInterval;

}

// Monitor point: WindDirectionInterval

Duration getWindDirectionInterval(WeatherStation* this) {

return this->windDirectionInterval;

}

// Control Command: setTemperatureInterval

void setTemperatureInterval(WeatherStation* this, Duration temperatureInterval) {

this->temperatureInterval = temperatureInterval;

}

// Control Command: setWindSpeedInterval

void setWindSpeedInterval(WeatherStation* this, Duration windSpeedInterval) {

this->windSpeedInterval = windSpeedInterval;

}

// Control Command: setWindDirectionInterval

void setWindDirectionInterval(WeatherStation* this, Duration windDirectionInterval) {

this->windDirectionInterval = windDirectionInterval;

}

155

24.5 Implementation file: WeatherStation.c

include <WeatherStation.h>

include <stdlib.h>

include <string.h>

include <stdbool.h>

include <errno.h>

include <math.h>

include <stdio.h>

void initializeWeatherStationAction(WeatherStation* this) {

printf("%s\n", "Executing initializeWeatherStationAction");

// Actions to initialize the WeatherStation go here.

}

void shutdownWeatherStationAction(WeatherStation* this) {

printf("%s\n", "Executing shutdownWeatherStationAction");

// Actions to shutdown the WeatherStation go here.

}

void aboutToAbortWeatherStationAction(WeatherStation* this) {

printf("%s\n", "Executing aboutToAbortWeatherStationAction");

// Actions to save crucial data go here.

}

// Monitor point: Temperature tbd

Temperature getTemperature(WeatherStation* this, ControlException* err) {

return 30.0;

}

// Monitor point: WindSpeed tbd

Speed getWindSpeed(WeatherStation* this, ControlException* err) {

return 4.0;

}

// Monitor point: WindDirection tbd

Angle getWindDirection(WeatherStation* this, ControlException* err) {

return 0.785;

}

// Control Command: getAverageWindSpeed tbd

void getAverageWindSpeed(WeatherStation* this, Duration minutes,

ControlException* err, void (*callback)(WeatherStation*, Speed, ControlException*)) {

callback(this, 0.0, err);

}

156

24.6 Test program: file CTestWeatherStation.c

include <stdio.h>

include <complex.h>

include <stdlib.h>

include <string.h>

include <stdbool.h>

include <WeatherStation.h>

void reportState(WeatherStation* this) {

printf("%s %s\n","WeatherStation state:",

toStringMROISystemState(getSystemState(this)));

}

int main (int narg, char** arg) {

WeatherStation* weather1 = createStandaloneWeatherStation ("test");

printf("%s\n", "WeatherStation created in standalone mode.");

reportState(weather1);

startSystem(weather1);

if (isSystemException(weather1)) {

printf("%s %s\n", "Could not start system.",

getSystemExceptionMessage(weather1));

return 1;

}

reportState(weather1);

initializeSystem(weather1);

if (isSystemException(weather1)) {

printf("%s %s\n", "System initialization failed.",

getSystemExceptionMessage(weather1));

return 2;

}

reportState(weather1);

operateSystem(weather1);

if (isSystemException(weather1)) {

printf("%s %s\n", "Could not make system operational.",

getSystemExceptionMessage(weather1));

return 4;

}

reportState(weather1);

ControlException* err = createControlException(weather1);

Temperature t = getTemperature(weather1, err);

if (isStatusOK(err))

printf("%s %6.2f\n", "The temperature is", t);

else {

printf("%s %s\n", "Error getting temperature.",

getExceptionMessage(err));

return 5;

}

157

Speed s = getWindSpeed(weather1, err);

if (isStatusOK(err))

printf("%s %6.2f\n", "The wind speed is", s);

else {

printf("%s %s\n", "Error getting wind speed.",

getExceptionMessage(err));

return 6;

}

Angle a = getWindDirection(weather1, err);

if (isStatusOK(err))

printf("%s %6.2f\n", "The wind direction is", a);

else {

printf("%s %s\n", "Error getting wind direction.",

getExceptionMessage(err));

return 7;

}

shutdownSystem(weather1);

if (isSystemException(weather1)) {

printf("%s %s\n", "Error shutting system down.",

getSystemExceptionMessage(weather1));

return 8;

}

reportState(weather1);

stopSystem(weather1);

if (isSystemException(weather1)) {

printf("%s %s\n", "Could not stop system.",

getSystemExceptionMessage(weather1));

return 10;

}

reportState(weather1);

destroyWeatherStation(weather1);

if (isSystemException(weather1)) {

printf("%s %s\n", "Error destroying system.",

getSystemExceptionMessage(weather1));

return 11;

}

printf("%s\n","WeatherStation destroyed.");

return 0;

}

158

