MRO Delay Line

Production Trolley Software Functional Description

INT-406-VEN-1002

Bodie Seneta
bodie@mrao.cam.ac.uk

rev 1.0
22 January 2010

N CAVENDISH
y\ ASTROPHYsICS

Cavendish Laboratory
Madingley Road
Cambridge CB3 OHE
UK



Change Record

] Revision \ Date \ Authors \ Changes

0.1 2010-01-21 | EBS First draft.

1.0 2010-01-22 | EBS Clarified status message content.
Objective

To describe the design, implementation and functionality of the trolley production
software.

Reference Documents

RD1 (Prototype) Trolley Software Functional Description INT-406-VEN-0102

RD2 (Prototype) Trolley Electronics Design Description INT-406-VEN-0112
Applicable Documents
AD1 Requirement specifications for the MROI “production” INT-406-CON-0101

AD2

AD3

AD4

AD5

delay line software
Production Workstation Software Functional Descrip- INT-406-VEN-1003

tion

Production Metrology Software Functional Descrip- INT-406-VEN-1004

tion

Production Shear Sensor Software Functional Descrip- INT-406-VEN-1005

tion

Network  Message

Protocols and Teleme- INT-406-VEN-1007

try /Status/Logs File Format

Scope

This document forms part of the documentation for the delay line final design re-
view. It describes the design, implementation and functionality of the software that
runs on the central processing unit (CPU) of the delay line trolley. Also included are
brief descriptions of the interfaced hardware and the development environment and
their impact on the software design.



This document is very similar to RD1. The main changes have been an update to re-
flect a change in trolley analogue input/output hardware (Section |5) and a descrip-
tion of two new programs: rtune (Section [7) simplifies adjustment of new on-board
preamplifier digipots, while pmacterm (Section [8)) is used to communicate with the
trolley’s programmable multi-axis controller (PMAC).

This document should be read in conjunction with RD2, which contains further
information on the interfaced hardware and a description of the firmware in the
PMAC.



Contents

1 Introduction

2 Development Environment
3 Runtime Environment

4 The User Program (Alacarte)

41 Terminology . . . . .. .. . ... ...
4.2 Initialisation . . . . . . . ...
4.3 Workstation connecttimer . . . . . .. ... ... ... .
44 Workstationdisconnect . . . . . . . ... L o o
45 Safemodetimeout . ... ... ... ...
4.6 Recoverymodetimeout .. ... ................. . ... .
4.7 Workstationcommand . . . . ... ... Lo oL
4.8 Command data connection . . ... .... ... .. ... ... .....
49 Commanddata .. ... . ... ... ... ...
410 Focustimeout . . . . . .. . . .. ..
4.11 Data arrival from analog to digital converters . . . . . . ... ... ...
412 Sendtimeout. . . . . . ...

5 The Dmm16 Kernel Module
5.1 Initialisation . . . . . . . . . ...
5.2 Analog to digital conversions . . . .. .. ... ... ... ...
5.3 Otherchannels . ... ... ... ... ... .. .. ... . ... .
54 ThelOCTLinterface . . .. ... .. ... . . ... ... ... .....

6 The Pmac Kernel Module

7 Rtune
71 Hardware . . . . . . . . ..
7.2 Software . . . . ... e

8 Pmacterm



1 Introduction

The delay line trolley CPU is a single board computer embedded in the electronics
bay of the trolley. It performs many tasks:

Receipt of commands from the workstation (AD2) and streams of data from

the metrology system (AD3) and shear camera (AD4) via a wireless ethernet
link.

Control of actuators and motors on the trolley.

Measurement of on-board sensors in order to close servo loops and provide
real time feedback and telemetry data for the user.

Transmission of telemetry data to the workstation for logging and user feed-
back via a wireless ethernet link.

Three programs have been produced to carry out these tasks. They run under Linux
on the CPU. The programs are:

Alacarte, a user program that communicates with various devices and performs
higher-level processing and coordination.

Dmm16, a Linux kernel module for communication with the trolley’s analog
I/O boards. This module is a heavily modified version of a module written by
Diamond Systems Corporation (the board vendor).

Pmac, a Linux kernel module for communication with the PMAC. This module
is a modified version of a module written by Michael Ashley of the University
of New South Wales.

Additionally, an engineering program called rtune has been written to set and read
the values of the digital potentiometers in the catseye preamplifier using the CPU’s
I?C interface, as might occasionally be required during servicing.

This document describes each of these programs, and the environments in which
they are developed and run, in more detail.

2 Development Environment

The operating system used for execution is Linux (2.6.11), chosen for the absence of
licence fees, previous development experience by the authors and open source code
availability. The development language is C because it is the preferred language for



Linux kernel module development and because it is familiar to all programmers in
the delay line team. Alacarte is written in an object-oriented way to facilitate porting
to C++ should that prove desirable.

Development occurs on a Debian Linux “testing” (currently “squeeze”) personal
computer. As the development computer and target computers have incompati-
ble processor architectures (Intel x86 and ARM-compatible RISC respectively) code
must be cross-compiled to run on the trolley CPU. Furthermore, it is necessary to
have access to the CPU’s kernel source code to compile the trolley modules. A de-
velopment kit from Eurotech is used, which includes the source code and the arm-
linux-gcc cross-compiler.

For alacarte, the glib library is used as a framework. This library is more well known
as the foundation for the gnome graphical user interface but can also be used in-
dependently, as it is here. Glib sets up an event loop which can be interrupted by
“watches”, such as the arrival of data from the analog to digital section of an analog
I/O card, or an internal timer signal. The use of glib in this way makes the trolley
program fully event-driven.

The two kernel modules, on the other hand, use the Linux 2.6 kernel application
programming interface. They are also event driven, reacting to events supplied by
the kernel.

Once software has been compiled, it is transferred to the CPU via the ethernet port.

3 Runtime Environment

The computer is a Eurotech Viper V2I4 single board computer. It features an Intel
PXA255 400MHz ARM compatible processor, five serial ports, an ethernet port and
an I?C interface. The bus is PC104 compatible, allowing the computer and various
peripheral boards to be stacked together into a robust, compact unit. The bus is
used to communicate with the motor controller and two analog input/output cards,
while power is derived from a PC104 compatible switch-mode power supply. The
computer communicates with the rest of the network via a wi-fi module.

The processor has an ARM compatible instruction set. The source code is mostly
independent of this, but in several respects it is not:

¢ The ordering of words is reversed to that of Intel x86 systems. This becomes an
issue when data is transferred between the trolley and other computers, as fre-
quently occurs over the network during normal operation. The low-level code
that the messaging protocol is based upon does not handle this automatically
and it must be dealt with explicitly.

¢ There is no floating point coprocessor so all floating point computations are
done in software and consequently are expensive.

5



* An on-board timer is used in a system-dependent way to accurately trigger an
interrupt that polls the analog I/O cards checking for data.

There are 64 megabytes of RAM present, ample to store Linux and the trolley pro-
grams, and flash memory is used to emulate a 32 megabyte hard drive upon which
the programs are stored when the trolley is powered down.

Finally, the CPU clock is kept synchronised with clocks in the other computers in the
delay line system using the NTP protocol so that telemetry data can be compared
between systems. The CPU receives commands and sends real-time and archival
data via a custom protocol developed in-house for this purpose. Additionally an
engineer can log in to the CPU using ssh via the network to perform maintenance or
debugging tasks.

4 The User Program (Alacarte)

An overview of the user-level program architecture is illustrated in Figure|l| Apart
from the use of the glib framework, the most influential factor in the overall design
has been robust network management due to the difficulty in physically accessing
the trolley while in service.

4.1 Terminology

Before proceeding, a note on terminology. The custom network protocol developed
for the delay line distinguishes between four types of message:

¢ Commands. These are orders and may have several parameters attached. They
require acknowledgements.

e Command data. These are streams of numbers sent over the network to close
servo loops that span more than one computer.

¢ Status data. These are messages that describe the current state of the sender
and are sent at 10Hz or faster. The intention is to give the user real time feed-
back of what is happening at the various devices, although the information
is also logged for future analysis. Status messages can also contain human-
readable text, which is tagged for logging or for fault notification.

¢ Telemetry data. These are messages sent at 1Hz or faster that contain arrays of
data not deemed necessary for real-time viewing. The sample rates are usually
higher than for status messages, and many sequential values can be sent at
once. Telemetry messages are logged for future analysis.



Start

{

Load
configuration

'

Main
event
loop

Workstation
™| connect timer >

Attempt workstation connection
If successful, cancel connect timer and any
pending safe or recovery mode timeouts

Workstation
disconnect >

Activate workstation connect timer
Activate safe mode timeout
Active recovery mode timeout

Safe mode

timeout

Slew trolley at zero velocity

Recovery mode|_,

timeout Drive trolley at predefined velocity
»| Workstation | Process command
command
» | Command data
connection | Initialise command data socket
—» | Command data|__, | process command data
Remove watch and socket if connection lost
—» | Focus timeout Stop focus

A/D data
> arrives >

—

Read A/D data and time stamp

Close differential position sensor loop
Close focus loop

Close steering loop

Package status data

Package telemetry data

Initialise send timeout

Disable A/D data watch

Send timeout |—»

Send status data
Send telemetry data
Enable A/D data watch

Figure 1: Overview of the user program architecture.




ADS contains further information on the protocol and the means by which the com-
puters initiate connections.

4.2 Initialisation

The program is stored on the local onboard flash disk. On startup, the Interferometer
Supervisory System (ISS) writes a configuration file to the local disk and then tells
alacarte to run. Alacarte loads the file during initialisation. This allows many program
parameters to be set without recompiling the code. Configureable options include:

* Network configuration such as an identifier, the address of the workstation,
and which network port numbers to use.

¢ In the event of a network failure, timeouts in seconds before attempting to
reconnect, enter a safe mode, or enter a recovery mode.

* Paths to devices used by the program.
¢ Sample rates.

* Analog to digital parameters. For each of the 16 input channels on each of
the two analog I/O boards, the user can specify the channel name, whether
it is to produce status or telemetry messages (or both), the sample rate, gain
and offset values to convert the incoming bits into the physical quantity they
represent, and the physical units. Hence the program behaviour can very easily
be changed to reflect wiring changes to the analog inputs.

* Drive and steering motor servo parameters.

* Motor parameters. The PMAC reports drive and steering motor positions and
speeds to the CPU, which can then be processed in a similar way to the analog
to digital parameters discussed above.

¢ Secondary mirror tip-tilt servo parameters.
¢ Secondary mirror focus servo parameters.

* Digital to analog parameters. These are configurable in a similar way to the
analog to digital parameters discussed above.

* Digital outputs. Output lines can be assigned here.

The program also initialises all internal objects and sets up some network connection
timers.

Once initialisation is complete, the program enters the main event loop, which as
described above is managed by glib. It waits there for various events to happen. The
possible events are described in more detail below.

8



4.3 Workstation connect timer

During initialisation, a timer is set to cause an event once every five seconds (this
value can be changed in the configuration file). On this signal the program attempts
to initiate a connection to the workstation via the network. If the connection is suc-
cessful, the program is able to receive commands from the workstation and the timer
(along with any pending contingency timers — see Subsections .5/and [4.6|below) is
cancelled. If no connection is made, further connection attempts will be triggered by
the timer until one is successful.

4.4 Workstation disconnect

If the connection to the workstation is broken, perhaps by a network or workstation
problem, this event causes the timer described in Subsection[4.3]to be reinitialised so
that the trolley computer will reconnect to the workstation automatically once the
problem is fixed.

Two other one-shot timers are also initialised here. These are a safe mode timeout
and a recovery mode timeout, described in Subsections 4.5/ and [f.6|below. The peri-
ods are as specified in the configuration.

4,5 Safe mode timeout

The safe mode timeout event, which occurs when the workstation connection has
been broken for a given number of seconds, causes the trolley to stop (more precisely,
to slew with zero velocity). The timeout period can be set in the configuration.

4.6 Recovery mode timeout

The recovery mode timeout event, which occurs when the workstation connection
has been broken for a given number of seconds, causes the trolley to slew with a
given velocity. The timeout period and the velocity can be set in the configuration.

This event handler was written so that the trolley would automatically move to a
pipe end for access in the event of a lengthy network interruption. However, it has
since been decided that the ability of the trolley to move independently without
warning was potentially dangerous and this velocity is now set to zero. However,
the code remains in case it is needed.



4.7 Workstation command

When connected, the workstation can send commands to the CPU to change the be-
haviour of the trolley. When a packet arrives on the ethernet port it is firstly checked
to see if it is from the workstation, is intended for this particular trolley, and is an
allowed trolley command. If it passes these tests it is parsed and action is taken ac-
cording to the command. In some cases, the command requires data from the analog
I/0O boards and the only immediate action is to set a flag so that the command is
remembered when the next set of data arrives from them (Subsection4.11).

The following commands are recognised:

¢ SteeringOn: Turn on the steering servo.

¢ SteeringOff [angle]: Turn off the steering servo and move the steered wheel to

[angle].
¢ TipTiltOn: Turn the secondary mirror tip-tilt servo on.

¢ TipTiltOff [X] [Y]: Turn the secondary mirror tip-tilt servo off and tilt the mirror
to angles [X] and [Y].

¢ FocusPos [position] [timeout]: Move focus to [position] and stop on arrival or
on [timeout], whichever happens first.

* FocusOffset [distance] [timeout]: Move focus [distance] from current position
and stop on arrival or on [timeout], whichever happens first.

¢ DirectSlew [velocity]: Move the trolley at [velocity], keeping catseye in a fixed
position. Overrides command data velocities sent from metrology system.

¢ DirectSlewOff [velocity]: Move the trolley at [velocity], keeping the catseye in
a fixed position, but allow the metrology system to override with slew or track
command data (Subsection 4.9).

4.8 Command data connection

Alacarte maintains a listen socket that waits for incoming command data connec-
tions on the allocated port number (as defined in the configuration file). This event
is triggered when an external command data source (either a shear camera or the
metrology system) attempts to connect to the socket.

The routine then tries to allocate a dedicated socket for communication with the
command data source. If successful, it adds a glib “watch” to trigger a command
data event whenever data arrives on the new socket (Subsection [4.9).

A maximum of five command data connections are allowed (the number can be
changed in the configuration file).

10



4.9 Command data

This event is triggered whenever data arrives on a command data socket. Expected
sources are the metrology system and whichever shear camera is allocated to the
trolley’s delay line. The data from them is used to close the metrology and shear
loops on the trolley.

The data is firstly checked to see if the source, destination and contents are allowed
and consistent. If it passes these tests it is parsed and action is taken according to the
contents. In some cases, data from the the analog I/O boards is also needed before
processing and the only immediate action is to set a flag so that the command data
is remembered when the next set of data arrives from the boards (Subsection 4.11).

The following command data are recognised:

¢ Slew [velocity]: Move trolley at [velocity], keeping the catseye in a fixed posi-
tion, unless a direct slew command is in force.

¢ Track [velocity]: Move trolley at [velocity] with the metrology loop closed
around the catseye and the differential position sensor value modifying the
velocity to keep the trolley underneath it (Subsection4.11).

¢ TipTiltOffset [X] [Y]: Move tip-tilt mirror [X] and [Y] from current position.

4.10 Focus timeout

This event is triggered a predefined time after a focus command has been given and
tells the focus drive to stop. The timeout period is set within the focus command
(Subsection [4.7). This is to protect the focus drive if for some (possibly mechanical)
reason it never reaches its destination.

The timeout is cancelled if the focus reaches its destination before the timeout ex-
pires.

4.11 Data arrival from analog to digital converters

This event is triggered by the arrival of raw data from the analog I/O boards. This
happens every 0.1 seconds as defined by a sample clock on one of the boards. Hence
all the actions described in this Subsection occur at a frequency of 10Hz.

On receipt of the event, the program firstly reads 0.1 seconds worth of data into a
local buffer. There are 32 channels of data (16 for each of the two boards), each of
which is 16 bits wide and currently sampled at 5kHz. The program also gets an
estimate of the time the signals were sampled from the device driver.

The most recent reading for each of the 32 channels is then used to close servo loops:

11



e If the trolley is currently tracking, the value read from the catseye differential
position sensor is added to the requested motor velocity that the metrology
system sent. The result is sent to the PMAC, which controls the motor. Hence
the motor position is continually adjusted to maintain a carriage position un-
derneath the catseye.

e If the focus servo is on, the value read from the focus encoder is used to calcu-
late the required speed and direction of the focus drive to get the focus to the
required position. This is converted into a drive voltage by a digital to analog
converter, which is then applied to the focus drive.

¢ If the steering loop is closed, the value read from the trolley inclinometer is
used to calculate a steering angle. This angle is then sent to the PMAC, which
controls the steering motor. The aim is to keep the trolley level.

The algorithm is as follows: If the tilt is more than a value specified in the con-
tiguration, nudge the steering by two steps in the correcting direction (unless
the velocity exceeds 0.1m/s, in which case move it one step). Otherwise, if it
has just crossed the ideal tilt value then steer straight. Otherwise, just nudge
the steering by a single motor step in the correcting direction.

This algorithm is designed to minimise the use of the steering stepper motor,
which draws significant current while stepping. Some user-configurable hys-
teresis is also built into the outer limit to prevent false triggering of the stepper
motor by tilt sensor noise.

The most recent reading for each of the 32 channels, plus status information (both
local and from the PMAC) is then bundled up into a status message to be sent to the
workstation. Any pending textual log or fault messages that have been generated
since the last time this event was called are also added prior to dispatch.

The entire block of readings from the analog to digital converters is then converted
into telemetry data. For each channel, the configuration file specifies whether a con-
version into telemetry is required and a sample rate. If a given channel is to be
sampled at less than the maximum rate, it is downsampled. This reduces the float-
ing point load on the CPU and network traffic. Local flags and PMAC data are also
bundled into the telemetry message.

The data is not sent immediately, as there is then a possibility that all the interfer-
ometer trolleys would decide to send their data at once, causing congestion over the
network and on the workstation. Instead, each trolley is allocated periodic times-
lots with respect to system time when it is allowed to transmit. These timeslots are
offset between trolleys so that no two can transmit at once, provided that their sys-
tem clocks are all synchronised with NTP. For a given trolley, the local system clock
time is inspected and a glib timer is armed so that it generates an event during the
next available timeslot (Subsection[4.12). The timeslot offset is defined in the config-
uration file and is currently set to 0. It is possible that the MROI's gigabit ethernet

12



network and the workstation will be able to handle these bursts of traffic, in which
case this section of code will become redundant.

Finally, the analog to digital data arrival event is cancelled so that it does not trigger
before the existing data is sent.

412 Send timeout

The send timeout is timed to trigger during a timeslot allocated for transmission of
status and telemetry information. Accordingly they are both sent to the workstation.
After dispatch the analog to digital data arrival event is re-armed, ready for the next
chunk of data to arrive from the analog I/O boards.

5 The Dmm16 Kernel Module

The dmm16 kernel module is responsible for communication with the analog I/O
boards. These are a pair of Diamond Systems Diamond-MM-16-AT PC104 boards.
Each has 16 analog inputs, 4 analog outputs, 8 digital inputs and 8 digital outputs.
They replace the discontinued Diamond-MM-48-AT boards that were originally se-
lected for this project.

The module communicates with the boards by reading from and writing to assigned
addresses in the PC104 bus memory space. It appears to the user as a range of char-
acter device files, each of which supports a subset of the board functionality.

The module is an extensive rewrite of a module provided by Diamond Systems Cor-
poration. The rewrite was necessary because:

¢ The original module contained proprietary Intel x86 binary code and hence
could not easily be ported to run on the CPU’s ARM processor.

¢ A PC104 bus interrupt line incompatibility was discovered between the analog
I/0 cards and the CPU. The I/O cards are designed to support multiple inter-
rupts per line while the CPU is not. The result is that the CPU cannot detect
interrupts generated by the I/O cards. Hence the software had to be modified
to support polling of the I/O card status.

¢ The Diamond-MM-48-AT boards that were originally chosen for the project
were discontinued, forcing the selection of an alternative board and modifica-
tion of the relevent module sections.

13



5.1 Initialisation

The device files needed by dmm16 are created at boot time by a script which then
loads the module itself. The module accepts a list of up to eight analog I/O board
base addresses as parameters, although it is unlikely in practice that more than two
will ever be used.

Once installation is complete, the user can configure the analog I/O cards using the
control interface (see Subsections[5.3]and [5.4]below).

5.2 Analog to digital conversions

Each board has 16 analog inputs, each of which is sampled in turn by a single on-
board 16 bit analog to digital converter. On board 0, a free-running clock is set to
trigger these scans at a user configurable rate (normally 5kHz). The clock output is
wired into an external clock input on board 1 which is thereby slaved to sample at
the same rate and time as board 0. On each board there is a 512 sample first-in-first-
out (FIFO) buffer that temporarily stores the digitised data before it is read by the
module.

Both FIFOs set a flag when they are at least half full. The module checks the flags
every 1.6ms until they are both set, and then reads out 256 samples from each. The
check is triggered by an internal timer interrupt on the CPU that is set up for the
purpose, and at the above data rate is sufficient for a buffer to fill by 128 samples.

As the data is read out, it is interleaved by board number, so that each 32 sample
chunk contains 16 samples from board 0 and 16 samples from board 1, all sampled
by the same trigger. After interleaving, the data is placed in a kernel FIFO buffer.
When the amount of data in this buffer grows to be 0.1 seconds” worth or more, the
current UTC time is noted and the module’s read function is woken up. This signals
Alacarte in user space that the data is available for reading, and Alacarte can then read
the data and the clock time and process them as described in Subsection From
the user’s point of view, all the channels from both boards are all read from a single
device, currently /dev/ad0.

The polling method of determining the FIFO status is inefficient. Furthermore, when
a sample is read out of the FIFO there is no way of knowing how old it is for the
purposes of time stamping, and the time stamp could in fact be up to 1.6ms late. It
would be much more efficient to trigger a hardware interrupt when the FIFO was
exactly half full and note the time then. However, as noted above this option is not
available due to differences in interrupt implementation between boards.

A method has been devised to correct for the time stamp problem: an internal timer
interrupt gets triggered once every system clock second and changes a logic level.
This logic level is then attached to one input channel on an analog I/O board and

14



it thereby accurately “marks” the data stream. An input channel (“Sync”) has been
allocated for this purpose but the signal has not yet been implemented.

5.3 Other channels

A range of other, much simpler, devices are provided for reading from and writing to
the analog I/O boards. A pair of bytes written to a digital to analog device causes a
voltage representing the value to be output from the equivalent pin. Similarly, bytes
written to the digital output devices change the states of their outputs.

A control device is also provided for more complex tasks. Reading from it provides
the contents of all of a board’s registers, while writing to it allows the contents of any
of those registers to be changed.

5.4 The IOCTL interface

The module makes a variety of useful housekeeping commands available via the
IOCTL interface:

e [OCTL_DMM16_RESET: Resets the boards.

* JOCTL_AD_CONEF: Configure the analog to digital converters based on the
contents of a passed data structure.

e JOCTL_DMM16_GET_VERSION: Returns the version number of the module.
¢ IOCTL_DMM16_GET_SAMPLE_T: Returns the sample time.
e JOCTL_DMM16_GET_NUM_BOARDS: Returns the number of boards in use.

¢ JOCTL_DMM16_FREE_IRQ: Free the timer interrupt request line used to poll
the hardware FIFOs.

e IOCTL_DMM16_WRITE_BYTE: For the control device, writes a byte to the
specified register in the I/O address space.

e JOCTL_DMM16_READ_ BYTE: For the control device, reads the contents of a
specfied byte in the I/O address space.

¢ IOCTL_PXA255TC_START_INTERRUPTS: Starts the polling timer interrupt.
¢ JOCTL_PXA255TC_STOP_INTERRUPTS: Stops the polling timer interrupt.

15



6 The Pmac Kernel Module

The pmac kernel module is modified from code provided by Micheal Ashley of the
University of New South Wales. The main changes are a port from the Linux 2.4
kernel to 2.6 and introduction of the ability to poll a PMAC rather than relying on
interrupts, as the PC104 version of the PMAC has no interrupt support.

Like dmm16, pmac is loaded at CPU boot time by a script. It accepts just two param-
eters: the hardware base address, and a polling interval.

The PMAC hardware communicates with the CPU via the PC104 bus using a text
based protocol: characters are read from and written to a single address in the CPU’s
PC104 address space. Hence from the user’s perspective, pmac is much simpler than
dmm16, because one simply writes bytes to or reads bytes from a single device. Ef-
fectively the PMAC behaves like a text terminal.

The PMAC contains a 2048 byte buffer for outgoing messages. This is checked by
the module for pending characters at the polling interval (currently 1ms). When
characters are detected, they are read into a ring buffer, ready for reading by alacarte
during its 10Hz read cycle. Similarly, data written to the module by alacarte goes into
a ring buffer until it is read by the PMAC hardware.

Two IOCTL commands are also available. PMAC_IOCGSTATUS returns PMAC sta-
tus information to the user, but is not used in Alacarte. PMAC_IOCLEARIBUF clears
the device driver buffer that receives data from the PMAC and is used during ini-
tialisation.

7 Rtune

Rtune is an independent trolley computer program written to change or discover the
digipots on the computer’s I?C bus. These digipots are embedded in the catseye
preamplifier and are used to tune the preamplifier for optimal performance.

7.1 Hardware

Each digipot chip is an Analog Devices AD5254, which contains four digipots. It also
contains EEPROM registers that can be used to access and change the digipot values
and a convenient chip identifier. There are also ROM registers containing calibration
information for each digipot. When the digipots are powered up, they are set to the
resistances stored in the EEPROM and require no computer intervention unless the
values are to be changed.

16



File Edit View Terminal Help
Trolley Digipot Adjustment Utility |T
Device Identifier RDAC Value R (% Mominal Total)
o] Met Loop Sok 0] EQ@ 0. 00O
1 127 52.32433
2 122 S0, 26930
] 037 15. 27571
1 Loc Loop S0k o] 131 S0, 34633
1 236 90, 67865
2 o]o]e} 0. 00000
] 130 S0.043332
2 Loc Loop 10k o] 126 47.96329
1 133 50.59950
2 131 49, 928586
] 131 49, 87658
3 Unavailable o] XXX
1 XXX
2 XXX
] XXX
Arrow keys move between fields, use [enter] to change a field, 'g' to quit. L

Figure 2: Screenshot of rtune running.

7.2 Software

Access to the digipots is a servicing requirement and considered beyond the scope
of alacarte. Instead, on the rare occasions when the digital potentiometers require
adjustment it is expected that an engineer will log in to the CPU directly and run
rtune to make the changes.

Rtune can be run by logging in to the trolley computer with ssh and typing “rtune”
on the command line. Rtune makes no assumptions about the circuit layout or the at-
tached AD5254s and instead iterates through the computer’s I*C bus space looking
for them. When it finds one it downloads the chip identifier and digipot resistance
values, which are in the form of a fraction of the maximum possible value.

The results are displayed in a table (Figure [2). For each chip, the identifier and the
current values of all four digipots are shown. To change any of these, the cursor keys
are used to move a cursor to the correct field and the “enter” key makes the field
editable. Identifier fields are modified by typing. Value fields are modified with
the “up” and “down” cursor keys. They update the resistance value immediately.
Pressing “enter” again writes a field to EEPROM, that value is then read back from
EEPROM and displayed in the field so that the user knows they have successfully
stored the new value.

17



Rtune is a simple program. There are only two noteworthy libraries present: the I*C
interface uses linux/i2c-dev and the user interface uses the curses library. This is a
lightweight graphical user interface for text terminals which introduces negligible
processing overhead.

Using rtune, the preamplifier can be tuned without removing the trolley from the
pipe. In fact, rtune and alacarte can run concurrently, permitting optimisation adjust-
ments to be made while the trolley is tracking, for example.

8 Pmacterm

Pmacterm is a terminal program for interacting with the trolley’s on-board PMAC
directly using keyboard commands. It can be used to tune PMAC servo parameters
or to diagnose faults.

Pmacterm uses the pmac kernel module described in Section [6| to communicate with
the PMAC. Development is in the very early stages, but it is expected that it will use
a curses interface like rtune.

Like rtune, pmacterm is expected to find use only during trolley servicing. Unlike
rtune, pmacterm cannot be run concurrently with alacarte because alacarte must also
communicate with the PMAC so there is potential confusion of commands and feed-
back. However, alacarte can be placed in an engineering mode in which it does not
read from the PMAC. This allows pmacterm to be used safely.

18



	Introduction
	Development Environment
	Runtime Environment
	The User Program (Alacarte)
	Terminology
	Initialisation
	Workstation connect timer
	Workstation disconnect
	Safe mode timeout
	Recovery mode timeout
	Workstation command
	Command data connection
	Command data
	Focus timeout
	Data arrival from analog to digital converters
	Send timeout

	The Dmm16 Kernel Module
	Initialisation
	Analog to digital conversions
	Other channels
	The IOCTL interface

	The Pmac Kernel Module
	Rtune
	Hardware
	Software

	Pmacterm

