
MRO Delay Line

Production Metrology Software Functional Description

INT-406-VEN-1004

Bodie Seneta
bodie@mrao.cam.ac.uk

rev 1.0
22 January 2010

Cavendish Laboratory
Madingley Road

Cambridge CB3 0HE
UK

Change Record

Revision Date Authors Changes
0.1 2010-01-15 EBS First draft.
0.2 2010-01-18 EBS Gave RTnet discussion its own subsec-

tion. Added RTnet references and bibliog-
raphy. Corrections to control loop timing
delays. Many minor diagram and word-
ing changes.

0.3 2010-01-18 EBS Added Reference and Applicable Docu-
ments sections, merged with bibliogra-
phy. Added datum and slew algorithm
discussion. Minor diagram and wording
changes.

1.0 2010-01-22 EBS Added information about jitter timing re-
quirements. Edited slew servo for con-
sistency with INT-406-CON-0101. Minor
wording changes.

Objective

To describe the design of the metrology production software and present the ratio-
nale upon which that design is based.

1

Reference Documents

RD1 MRO Delay Line Derived Requirements INT-406-VEN-0107
RD2 Metrology System & VME Hardware Design Descrip-

tion
INT-406-VEN-0113

RD3 MRO Delay Line Timing Requirements for Control
Loops

INT-406-VEN-XXXX

RD4 Kiszka, J. WAgner, B. Zhang, Y. Broenink, J., RTnet—A Flexible Hard Real-
Time Networking Framework, 10th IEEE Conference on Emerging Technolo-
gies and Factory Automation, 2005.

RD5 Barbalace, A. Luchetta, A. Manduchi, G. Moro, M. Soppelsa, A. Taliercio, C.,
Performance Comparison of VxWorks, Linux, RTAI and Xenomai in a Hard Real-
time Application, IEEE Transactions on Nuclear Science, 55 pp.435–439

RD6 Luchetta, A. Barbalace, A. Manduchi, G. Soppelsa, A. Taliercio, C., Real-time
communication for distributed plasma control systems, Proceedings of the 6th
IAEA Technical Meeting on Control, Data Acquisition, and Remote Partici-
pation for Fusion Research, 2008. pp. 520–524.

RD7 Tian, Y. Ren, G. Wu, Q., Implementation of Real-time Network Extension on
Embedded Linux, International Conference on Communication Software and
Networks, 2009. pp.163–167

Applicable Documents

AD1 Requirement specifications for the MROI “production”
delay line software

INT-406-CON-0101

Scope

This document forms part of the documentation for the preliminary production soft-
ware design review. It describes the design and implementation of the metrology
software and the rationale behind that design, as influenced by the performance re-
quirements and the hardware constraints.

It is assumed that the reader is familiar with the construction and principle of oper-
ation of the Magdalena Ridge Observatory Interferometer (MROI) and in particular
with the design of the MROI delay lines. Also assumed is some background in com-
puter programming (especially under linux), electronics, and computer networks.

2

Contents

1 Introduction 4

2 Metrology System Hardware Context 4

3 Performance Requirements 5

4 Hardware and Timing Constraints 6

4.1 Hardware . 6

4.2 Timing Constraints . 7

5 Software Development and Execution Environment 8

6 Software Architecture 9

6.1 Kernel Modules . 9

6.2 The Control Loop . 10

6.3 Fringe Tracker . 12

6.4 User-Space Program . 13

6.4.1 Workstation connect timer . 13

6.4.2 Workstation connection failure 14

6.4.3 Trolley connect timer . 14

6.4.4 Trolley connection failure . 14

6.4.5 Command arrives from workstation 14

6.4.6 Trajectory information arrives from workstation 15

6.4.7 Telemetry data arrives from metrocontrol 15

7 Testing 16

8 Conclusion 18

3

1 Introduction

A functional metrology system is central to the performance of any modern interfer-
ometer delay line. It provides vital real-time feedback as to how much optical delay
is being inserted into each science beam and, as part of a control loop, enables delays
to be so well controlled that science beam optical coherence and the ability to collect
science data are achieved.

The metrology system at the MROI will be equally important to that instrument’s
functionality, and it must be designed with care. An important aspect of that de-
sign is the software, which must calculate feedback for up to ten delay lines within
strict deadlines while also working within the constraints imposed by the available
hardware.

This document firstly provides some context: an overview of the metrology system,
its peformance requirements, a description of the metrology hardware and the con-
straints that hardware imposes on the software design.

The software itself is then described, beginning with the overall software architec-
ture and moving on to a detailed discussion of the control loop that is central to the
metrology system operation.

Finally, some results are presented as indicators of the ability of the software to meet
the performance requirements.

2 Metrology System Hardware Context

The purpose of the metrology system is to keep each delay line trolley on the tra-
jectory needed to collect science data. It does this by measuring the current trolley
position and providing a negative feedback error signal to the trolley. Figure 1 shows
how the metrology system fits into a delay line as a whole.

The system is based upon a commercial Agilent metrology laser, whose light is split
ten ways to service up to ten delay lines. The light is sent via a beam expander
to each trolley, where it traverses the catseye mirror pair within and returns to the
metrology system via a beam compressor. There it mixes with the outgoing beam
to produce optical interference that can be monitored with a detector. Movement
of the trolley towards or away from the metrology system will cause the detector to
generate beats which can be counted in an Agilent computer card to determine how
far the trolley has moved, accurate to within fractions of the wavelength of light.
Because the science beam traverses a geometrically identical path, the additional
displacement in that path is thus also known.

Such a system can only measure relative displacement, so some other means of pro-
viding an absolute measurement (a “datum”) is required. This is provided by an
optical datum switch that is triggered by a knife edge on the trolley.

4

Beam
Expander

Beam
Compressor

M
e
tr

o
lo

g
y

Optics Table
Limits and

Bump Stops
Limits and

Bump Stops

Shear
Computer

VME
Computer

Shear
Camera

Workstation Network

Transceivers

Induction Power

Low latency analogue signal

Ethernet

Delay Line Pipe – Side View

Delay Line Pipe – Top View

W
e
d
g

e
s

Trolley

P
ri

m
a
ry

S
e
co

n
d

a
ry

V
a
cu

u
m

Metrology
W

h
e
e
ls

W
h
e
e
ls

Aerials Aerials

Electronics
Science beam

200m

Datum

Fringe
Tracker

RTnet

Figure 1: Overview of the hardware for a single delay line. The metrology system
components are shown in grey and the metrology software under review executes
on the VME computer.

The metrology system measurement count and the datum switch state are both in-
puts to the VME computer. Other inputs are the current time from an on-board GPS
clock, commands and trajectory data that arrive via the network, and a dedicated
ethernet input from the fringe tracker. The outputs are a low-latency analogue signal
to the trolley catseye to compensate for small but rapidly varying trajectory errors,
fringe tracker feedback, commands to the trolley carriage via ethernet for coarser
corrections, and telemetry for the workstation.

3 Performance Requirements

The metrology software requirements are driven by the optical path delay control
loop requirements (RD1 and RD3)1. The control loop attempts to minimise tracking

1RD3 is now out of date. However, the requirements on jitter in that document are still valid.

5

errors for each trolley by sending a feedback error signal to each trolley based on
the difference between the trolley metrology-measured position and the demand
position.

The requirements are:

• Control loop bandwidth: 3db frequency greater than 100Hz.

• Control loop latency less than 40µs.

• Maximum RMS waypoint-time to actualisation-time jitter:

– For 10ms interval: 0.59µs.

– For 35ms interval: 1.6µs.

– For 50ms interval: 2.2µs.

The first requirement, plus a safety margin, translates into a control loop sample
period of 200µs. The second requirement states that each trolley must have its error
feedback applied less than 40µs (including transmission latency) after its position is
measured by the metrology hardware. The last three requirements impose limits on
how much the difference can vary between the time that a position is calculated for
and the time at which it is applied.

Note that it is not necessary to include the transmission latency when considering
the requirements, because that is negligible.

Additionally there are performance requirements concerning the fringe tracker (AD1):

• Fringe tracker offset delivery rate: 1Hz–1kHz.

• Fringe tracker offset delivery latency less than 200µs.

• Fringe tracker feedback latency less than 500µs.

4 Hardware and Timing Constraints

4.1 Hardware

The software executes on a single board computer, connected to peripheral devices
via a VME bus within a fan-cooled VME crate. Specifically, the VME crate compo-
nents are as follows:

• Computer: Concurrent Technologies VP 325 022-23U. An Intel x86-style com-
puter with a Pentium-M 1.6GHz processor and a Tundra Universe II bridge.
The function of the bridge is to make the VME bus appear as a native PCI bus
peripheral to the computer.

6

• Storage: Concurrent Technologies DS MSS 002. Contains a hard drive and
printer output for the computer.

• Timer: Symmetricom TTM635VME. This board keeps time using an input GPS
signal and generates a periodic interrupt for use in processing metrology data.

• Digital Input/Output: Acromag IP470A. Interfaces to datum switches via a
custom interface board.

• Analogue output: Acromag IP220. Interfaces with low latency links to trolleys
via a custom interface board.

• VME bus carrier: Tews TechnologiesTVME200. Carrier board for both of the
Acromag boards.

• Interface board: A custom interface board with front panel sockets for connec-
tion to the datum switches and low latency links.

• Metrology board: Agilent 10898A. Interfaces with the metrology laser and de-
lay line metrology optics. One 10898A has two channels and each can measure
the position of one delay line trolley. One 10898A board is currently used, but
there could be up to five present, depending on how many delay lines are com-
missioned.

There are additionally several peripherals external to the VME crate:

• Metrology laser: Light from the metrology laser is split ten ways (one mea-
surement beam per delay line). A reference beam is mixed with each of the ten
measurement beams, and the resulting signals are fed to the Agilent 10898A
board via optical fibres in order to determine displacement of the associated
trolleys. Tests have shown that there is ample metrology signal per channel
even though the original laser beam is split ten ways.

• Datum switches: Contrinex LTS-1180L-103-516. These optical switches trigger
when a trolley goes past them, and are interfaced to the VME crate via the
Acromag IP470A.

• Low latency links: A low latency link transmits an analogue voltage from the
VME crate to a given delay line trolley via a balanced wire and FM radio link.
The Acromag IP220 drives one low latency link per trolley.

4.2 Timing Constraints

The main software timing constraint is that reading from the VME data bus is slow.
Using Xenomai real-time linux (Section 5) and an oscilloscope monitoring the VME
bus, the following delays have been found:

7

• Interrupt routine entry latency: 5µs.

• VME bus data read: 1µs.

• VME bus data write: 0.3µs.

• Calculation time for one delay line: 0.5µs.

The slow read time appears to be an aspect of the PCI-VME bridge, and has also
been observed when using QNX instead of Xenomai.

These results can be used to rule out some software architectures. For example,
triggering the processing of each delay line off its own interrupt would not work
well for ten delay lines because there would be 50µs of overhead per cycle spent on
interrupt entry. Similar delays would be incurred in reading the time from the VME
timer board prior to each trolley calculation.

It seems much better to have a single interrupt routine in which the time is read only
once and the deterministic nature of Xenomai is exploited to calculate the time of
each delay line update by dead reckoning. In this scenario it would be quite feasible
to perform the necessary I/O and calculations for one trolley within 10µs such that
an interrupt routine for all ten would take 100µs. This would leave 100µs out of each
200µs period free for the computer to perform housekeeping tasks.

This is the architecture that has been adopted and more detail can be found in Sub-
section 6.2

5 Software Development and Execution Environment

Development and execution of metrology system code occur on the same computer,
the one described in Subsection 4.1 above. The operating system undergoing tests
is Linux (the Debian “testing” distribution) using a 2.6.29.4 kernel and patched with
Xenomai 2.4.8-2 to run as a hard real-time system. The Xenomai RTDM application
programming interface is used. The compiler is gcc. This arrangement was chosen
for its open-source nature, hard real-time performance (including the use of floating
point arithmetic) and the flexibility to run real-time and non-real-time code in the
same program.

The real-time software components are contained in linux kernel-space modules
(“drivers”) that use Xenomai libraries and the linux kbuild system. They are writ-
ten in C, the de-facto standard for linux kernel code. The non-real-time components
mainly occur in linux user-space like any other linux program and are event-driven
through use of the Glib library framework. They are also written in C, but in an object
oriented fashion to enable straightforward porting to C++ should that be preferred.

8

User-space
program

Real-time
kernel
modules

Metrology
hardware

timer metrology lowlatency datum fringetrackmetrocontrol control loop

timer
board

metrology
board

analogue
board

digital
board

fringe
tracker

network workstationtrolley

fil
e

op
er

at
io

n s

te
le

m
et

ry
 b

uf
fe

r

tr
aj

ec
to

ry
 b

uf
fe

r

fil
e

o
pe

ra
tio

n s

fil
e

 o
pe

ra
tio

n s

fil
e

op
e

ra
tio

n
s

fil
e

op
er

at
io

n s

fil
e

op
er

at
io

n s

ethernet

direct
function

calls

V
M

E
bu

s

V
M

E
bu

s

V
M

E
bu

s

V
M

E
bu

s

R
T

ne
t

ethernetethernet

hardware interrupt

GPS laser
interferometer

low latency
links

datum
switches

fringe
detector(s)

metro

Figure 2: Overview of the metrology program architecture and its external connec-
tions.

6 Software Architecture

The metrology code consists of a set of real-time kernel modules which interface
with the hardware and process data in real time, and a user-space program which
processes non-real-time tasks. An overview of the metrology program architecture
is illustrated in Figure 2.

6.1 Kernel Modules

There are six modules. Four of these, called “timer”,“ metrology”, “lowlatency” and
“datum”, communicate with hardware in the VME crate via the VME bus, while
“fringetrack” communicates with the remote fringe tracker via RTnet, a real-time
low-latency dedicated ethernet link (RD4). These modules do very little to process
data going to or coming from their associated hardware, they simply facilitate the
connection. The majority of the metrology processing occurs in the “metrocontrol”

9

module.

This modularity has many advantages over a monolithic program. For example,
hardware changes can be accommodated simply by modifying the associated mod-
ule (rather than modifying the entire program). The overall program structure also
becomes easier to understand and maintain.

The metrocontrol module is a container for the metrology control loop (Subsec-
tion 6.2), which runs whenever a periodic hardware interrupt pulse arrives from
the timer board. The control loop interacts with the metrology hardware by directly
calling appropriately exported functions from the other modules (this is very fast as
it has no more overhead than a function call within metrocontrol itself). metrocontrol
also maintains two buffers that are accessable from user space: one gets loaded with
the telemetry data generated during control loop execution, the other reads trajec-
tory demand information that arrives from user space. These two buffers effectively
decouple the real-time and non-real-time operations of the metrology software.

In addition to the interfaces already discussed, every module also has a standard file
stream interface to the user-space program, which allows initial configuration and
some state changes to be controlled from user-space.

6.2 The Control Loop

The metrology software design depends on the structure of its innermost control
loop, which in turn depends on the performance requirements (Section 3) and the
hardware timing constraints (Subsection 4.2).

To guarantee that the control loop has sufficiently accurate timing, it is written as
an interrupt-driven routine within the metrocontrol Xenomai real-time linux kernel
module. The interrupt is triggered at 5kHz by a pulse on the VME bus SYSFAIL
line, which is generated by the timer board and phase-locked to the timer clock’s
one-second tick.

The execution of the control loop is summarised in Figure 3.

Once within the interrupt routine, the code firstly latches and then reads the time
from the timer board. This serves two purposes: firstly it provides an accurate times-
tamp for data acquired during the routine, and secondly it tells the routine what the
interrupt latency was. All other times within the routine can be approximated by
dead reckoning, since a Xenomai kernel-level interrupt routine is highly determinis-
tic.

Next, the datum switch array is read. All the switches can be polled at once by
a single VME bus read so it makes sense to do this before considering individual
trolleys.

The current time is then calculated, based on the time read from the timer board and
the time taken to read that time and the datum switches. A delay is added to pad the

10

t ← t + VME bus read time so far

i ← 0

Latch and read trolley
i
 position

p
i
 from metrology board

Poll datum switch array

Calculate demand position d
i

using workstation and fringe

tracker data and t

Error e
i
 ← d

i
- p

i

Send e
i
 as low latency

correction to trolley
i

Write telemetry to output buffer
and fringe tracker

i < num_delay_lines?

i ← i + 1
t ← t + loop execution time

YESNO
Exit interrupt

Latch and read time
from timer board tInterrupt entry

Delay until 15μs after interrupt

t ← t + delay

Flag any datum
i
 state change

Figure 3: Overview of inner control loop execution. Here num_delay_lines is the
number of delay lines currently in use.

11

total elapsed time since the SYSFAIL interrupt to 15µs. This corrects for any interrupt
entry latency jitter that may have occurred so that trolley processing always begins
15µs after the SYSFAIL line fired.

Each operational delay line is now considered in turn2.

Firstly, the position of that trolley is latched and read from a metrology board. Then
a demand position is calculated, interpolating from a set of trajectory waypoints sent
by the workstation to the time at which the metrology position was latched. Option-
ally, an offset from the fringe tracker is then added. Finally, the demand and actual
trolley positions are compared to determine an error signal. That signal is written
to the analogue ouput register for the low latency link to that trolley. The gain is as
high as the link will tolerate, to minimise noise encountered during transmission.

The time between latching the metrology and sending the low latency correction
takes about 8µs, well within the 40µs tolerance specified above for the calculation.
Some housekeeping then follows. Any datum state changes get flagged, data accu-
mulated during this iteration is added to an output buffer for later processing, and
that 8µs is added to the elapsed time to be used when considering the next trolley.
Because the time is calculated using dead reckoning, any errors in it are cumulative
and build up until the last trolley is considered. However, the tolerance on the to-
tal error is 40µs and errors on that scale would have easily been noticed in lab tests
already performed.

The jitter requirements (Section 3) are met by exploiting the determinism of the rou-
tine. The only potential disturbances to the execution time are caused by PCI bus
access variability, due to the state of the PCI bus clock when requests arrive or to bus
traffic caused by semi-autonomous PCI devices. The former will cause a jitter of only
±15ns, and the latter should be infrequent enough that the RMS jitter is still within
specification. However, if this becomes an issue, it should be possible to explicitly
lock out external PCI bus requests for the duration of the interrupt routine.

Finally, after all trolleys have been considered the interrupt exits and hands control
back to the kernel.

6.3 Fringe Tracker

It is a requirement (Section 3) that the metrology system receive real-time updates
from the fringe tracker, at rates of 1Hz–1kHz and latency less than 200µs. It is also
a requirement that the metrology system sends feedback to the fringe tracker with a
latency of less than 500µs. In order to meet these requirements, data is transmitted
between the two systems using RTnet.

2The control loop knows which delay lines are in use from the application’s configuration file,
which in turn is generated by the Interferometer Supervisory System before the application is started.

12

No in-house tests of RTnet’s performance have yet been done. However, other re-
search groups have made such investigations. Barbalace et. al. (RD5) found RTnet
had a latency of just over 100µs when transmitting packets of approximately 256
bytes between two VME systems. The same group (RD6) concluded that “the per-
formance obtained by using open source code is suitable for sub-millisecond real-
time communication in plasma control.” Additionally, Tian et. al. (RD7) measured a
round trip time of 183µs for 400 bytes of data. Given these results it seems unlikely
that RTnet would be unable to satisfy the communications requirements.

As the data arrival rate from the fringe tracker is variable, the fringetrack module
checks for incoming data at the end of each control loop run. If data has arrived,
then it is written into a fringe tracking offset variable that can be read during future
control loop iterations until it is updated once more. The metrology feeback, on the
other hand, occurs at a fixed rate and is simply sent to the fringe tracker each time
the control loop runs, or once every two cycles if RTnet cannot sustain a 5kHz packet
rate.

6.4 User-Space Program

The user-space program, “metro”, is relatively ordinary. It has the task of interfacing
the control loop with the delay line workstation and trolleys. Code written for a
metrology emulator by John Young will be extensively re-used, greatly accelerating
development.

On startup, the program loads a local configuration file that sets various parameters.
These include an identifier string, internet protocol addresses and port numbers for
communication with the workstation and trolley. There is also a mapping between
delay line number and metrology channel number, since this will vary as more de-
lay lines are added to the MROI and delay lines may also occasionally be out of
commission during repair or maintenance.

During initialisation, the program checks for the presence of all the modules and
initialises them. Once initialisation is complete, the program enters the main event
loop, which is managed by the Glib framework. It waits there for various events to
happen. The possible events are described in more detail below.

6.4.1 Workstation connect timer

During initialisation, a timer is set to cause an event once every two seconds (this
value can be changed in the configuration file). On this signal the program attempts
to initiate a connection to the workstation via the network. If the connection is suc-
cessful, the program is able to receive commands from the workstation and the timer
is cancelled. If no connection is made, further connection attempts will be triggered
by the timer until one is successful.

13

6.4.2 Workstation connection failure

If the connection to the workstation is broken, perhaps by a network or workstation
problem, this event causes the timer described in Subsection 6.4.1 to be reinitialised,
so that the metrology system will reconnect to the workstation automatically once
the problem is fixed.

6.4.3 Trolley connect timer

The trolley connect timer behaves like the workstation connect timer, except that it
attempts to connect to all the trolleys listed in the initialisation file, thereby allowing
direct control of coarse carriage velocity from the metrology system.

6.4.4 Trolley connection failure

If the network connection with a trolley fails the timer in 6.4.3 gets reinitialised so
that a connection can be reestablished once the failure is rectified.

6.4.5 Command arrives from workstation

When connected, the workstation can send commands to the metrology system to
change its behaviour. These are checked for consistency upon arrival.

Some commands make the metrology system drive trolleys: making them idle, try-
ing to make them track trajectories input from the workstation, or getting them to
search for the datum switch. Other commands are concerned with fringe tracker
input: turning it on or off and resetting the offset.

Of these commands, the datum-seeking command initiates the most complex se-
quence of events, because no assumptions can be made as to the trolley position
when this command arrives. The algorithm is as follows:

• Send the trolley away from the metrology system at full speed for several sec-
onds. This is to ensure that it is further away than the datum switch, and the
delay line limit switches will cause it to safely stop if it is at the far end of the
delay line.

• Stop the trolley.

• Slew the trolley towards the metrology system at full speed until the datum
switch triggers. Note the metrology reading when this happens. At full speed
the trolley is moving at 0.7m/s, so with metrology sampling at 5kHz this tech-
nique introduces no more than 140µm of error to the datum finding procedure.

14

• Stop the trolley.

• Slew the trolley away from the metrology system until it is 5mm closer to the
metrology system than the datum is, using the previously noted metrology
reading.

• Stop the trolley.

• Slew the trolley away from the metrology system at 1mm/s until the datum
switch triggers. Zero the metrology counter when this happens. This reading
only introduces a maximum of 200nm of error, so errors inherent in the datum
switch measurement (a few microns) now dominate.

• Stop the trolley.

The slew algorithm aims to minimise the time for a trolley to go from a tracking
trajectory (or a standing start) to a new tracking trajectory:

• Implement a maximum-acceleration, constant-deceleration servo if the displace-
ment is large.

• If the trolley is within 10mm of the new tracking position, implement a damped
first-order servo.

• Once within tracking range (about 2mm), tell the trolley catseye to adjust its
position using low latency link feedback and tell the trolley carriage to travel
at the required velocity.

6.4.6 Trajectory information arrives from workstation

A second’s worth of trajectory demands arrives from the workstation at least one
second in advance, to give metro time to deliver it to metrocontrol. This event causes
metro to put the data in metrocontrol’s trajectory buffer so that it is available to the
control loop when it is needed.

6.4.7 Telemetry data arrives from metrocontrol

This signal occurs when metrocontrol’s telemetry buffer has acumulated at least a
tenth of a second’s worth of data. When that happens, the oldest tenth of a second’s
worth is read out and packaged up into telemetry that is then sent to the workstation
over the network. The most recent of this data is also used to change the state of
metro (for example, when a datum switch has changed state) and to modify the
velocity sent to the trolley over the network.

15

Once this is done, the program returns to the main event loop and waits for another
event. This particular event occurs at 10Hz (with some jitter) and importantly is
synchronised to the rate at which telemetry data is generated. That in turn is locked
to the phase-locked 5kHz interrupt signal coming from the timer board.

7 Testing

The production metrology software is a complete rewrite of the prototype metrology
software, in a different operating system, and it is prudent to perform timing tests to
ensure that it will work to specification. Here, such a test is presented.

In this test, test software is run to simulate a control loop. It performs all the calcu-
lations and VME bus reads and writes that will be required by the final product. In
this particular test, it handles two metrology channels.

The performance is monitored by a dual channel oscilloscope. Channel 1 monitors
the SYSFAIL interrupt line on the VME bus and this also serves as the oscilloscope
trigger. Channel 2 monitors the least significant bit on the VME data bus and gives
a good indication of bus activity. 40ms exposure photographs of the oscilloscope
screen are then taken, thereby integrating the display over 200 control loop cycles.

Figure 4 shows an entire 200µs control loop cycle, indicated by the SYSFAIL interrupt
appearing at the start and end of the top trace. Some VME bus activity is visible
in the lower trace. Importantly bus activity has finished about 30µs into the cycle,
indicating that only a small portion of the entire cycle is spent within the interrupt
routine. This is an ideal result, as it means there is plenty of time for the computer to
execute other tasks before SYSFAIL triggers again.

Figure 5 shows the earliest part of the signal from Figure 4 in more detail. In the top
trace, the SYSFAIL interrupt is shown to have a finite width, while the bottom trace
shows two groups of bus activity. The first of these groups is associated with reading
the time and datum hardware, which is only done once per cycle. The second group
is actually two groups of nearly identical activity and indicates the metrology reads
and low latency writes that occur once per metrology channel.

The event timing in the second trace can be used to make deductions about the con-
trol loop performance:

• Bus activity is first seen 5µs after the SYSFAIL line goes low. This shows that
Xenomai interrupt entry latency is consistently about 5µs for the metrology
computer.

• Successive reads occur about 1µs apart, indicating, as discussed above, that
VME bus reads are the slowest parts of the control loop.

16

Figure 4: Oscilloscope screenshot of VME bus activity over an entire 200µs metrology
sample cycle.

Figure 5: Oscilloscope screenshot of VME bus activity over the first 50µs after the
SYSFAIL interrupt.

17

• Each of the two calculations for the two metrology channels takes about 8µs
to execute. Hence ten channels would take about 80µs and the entire interrupt
routine would exit 97µs after the SYSFAIL line went low. This still leaves 100µs
per cycle, or half the available CPU time, for the computer to run the user-space
program and do housekeeping.

• The trace is sharp even though it is an integrated view of 200 oscilloscope
sweeps. This indicates that the interrupt jitter and any other causes of jitter
within the interrupt routine are small.

8 Conclusion

In conclusion, it is clear that the hardware and software in the metrology system will
be able to correctly manage the tracking of ten delay line trolleys with ease.

18

	Introduction
	Metrology System Hardware Context
	Performance Requirements
	Hardware and Timing Constraints
	Hardware
	Timing Constraints

	Software Development and Execution Environment
	Software Architecture
	Kernel Modules
	The Control Loop
	Fringe Tracker
	User-Space Program
	Workstation connect timer
	Workstation connection failure
	Trolley connect timer
	Trolley connection failure
	Command arrives from workstation
	Trajectory information arrives from workstation
	Telemetry data arrives from metrocontrol

	Testing
	Conclusion

