
Design of an MROI System

Allen Farris

September 13, 2009

Version: 0.9

Document: INT-409-ENG-0020 rev 0.9
Work package: WP 4.09.03

System: MROI Supervisory System

Approved by: Allen Farris
MROI

Team Lead, Software and Control Systems

Magdalena Ridge Observatory
New Mexico Tech
801 Leroy Place

Socorro, NM 87801 USA
http://www.mro.nmt.edu

1

Contents

1 Introduction 3

2 System Structure 6

2.1 A Basic System . 9

2.2 An Asychronous System . 12

2.3 A Monitoring System . 13

2.4 The State Model . 14

3 Communications Protocol 17

3.1 Encoding and decoding types of data . 21

3.1.1 Methods for encoding data . 22

3.1.2 Methods for decoding data . 23

4 Defining a High-level System Interface 24

4.1 System Worksheet . 24

4.1.1 Columns in The System worksheet 24

4.2 Monitor Worksheet . 26

4.2.1 Columns in the Monitor worksheet 26

4.3 Fault Worksheet . 29

4.3.1 Columns in the Fault worksheet . 29

4.4 Control Worksheet . 29

4.4.1 Columns in the Control worksheet . 29

4.5 Parameters Worksheet . 31

4.5.1 Columns in the Parameters worksheet 31

4.6 The Code Generation Framework . 33

5 Change History 35

5.1 Version 0.9 . 35

6 Additional information 36

2

1 Introduction

The overview document on the Supervisory System (see Reference [1]) focused on the nature
and structure of the MROI Supervisory System. This document focuses on an application
system that is managed by the Supervisory System. In subsequent sections we will discuss:

• How such a system is structured,

• Its high-level definition,

• Its nature as a server and how it interacts with remote clients,

• How it interacts with key elements of the Supervisory System, and

• The communications protocol it uses.

Before tackling these issues, we need to have a better grasp of exactly what a system is.

The MRO Interferometer consists of a collection of systems that are managed by the Super-
visory System. Each instance of a system interacts with the MRO Interferometer as a whole
in specific ways that are defined by that system.

The Supervisory System itself is a collection of modules: one Executive, Database Manager,
and Operator Interface; one or more Data Collectors; and, one or more Supervisors, each of
which creates its own Fault Manager.

An MROI application system managed by the Supervisory System lives in a complex en-
vironment, which is depicted in Figure 1. The system is of a specific type and is uniquely
identified, within the MROI network, by a specific name assigned to that system instance.
The system has a state at all times; it implements a well-defined state model. The system
has a log file, on which it publishes messages related to internal events that occur within
its lifetime. The system publishes monitor data which is produced during its execution. It
also is able to communicate with other remote servers: the Database Manager, Fault Man-
ager, and Telescope Operator. Using these connections, a System is able to ask the Database
Manager for initilaization data, for example, publish faults and alerts, and, if necessary, send
messages directly to the telescope operator. The system, in general, functions as a server,
i.e., it responds to commands sent by one or more remote clients, but, more specifically, it
functions under the control of a Supervisor. All of this functionality is implemented by a
suite of classes that are used in defining an MROI application system.

A system in this context is any collection of hardware and software modules that function as
a unified whole, i.e. has a well-defined set of monitor points and control commands. Such a
system may be a collection of other systems; so, a system can have a hierarchical structure.
The Supervisory System, Figure 2, is a collection of systems. The Environmental Monitoring
System, Figure 3, is a collection of weather stations and other hardware, each of which is
itself a system. Note also that both the Supervisory System and Environmental Monitoring
System are extensions of a ControlSystem, which is part of the suite of classes mentioned
above. From the point of view of the Supervisory System, a system is any software module
that is an extension of the classes that implement the complex MROI environment described
above.

3

Figure 1: An MROI System

4

Figure 2: The Supervisory System

Figure 3: The Environmental Monitoring System

5

2 System Structure

MROI application systems are diverse. Frequently they have demanding real-time require-
ments and are capable of generating data at high rates. In addition, because some of them are
supplied by external vendors, their implemenation techniques vary considerably. Neverthe-
less, they do have common characteristics. The software described in this section is designed
to exploit those common features. Its purpose is to aid in building systems that are being
designed and developed in-house and to streamline the process of integrating all application
systems into a coherent, distributed network managed by the Supervisory System.

The classes described here and shown in Figure 4 are designed to implement what is common
to MROI application systems. There are three types of systems in increasing levels of com-
plexity. We will refer to these three types as basic, asynchronous, and monitoring systems.
Actual MROI systems are extensions of one of these three types.

The basic system classes (shown in yellow in Figure 4) implement the environment described
in Figure 1. All commands submitted by a client to this type of system are synchronous
commands; if the command is expected to return some item of data or a complex object, the
client is blocked until the request is processed and that item of data or object is returned. An
asynchronous system (shown in light blue in Figure 4) is itself an extension of a basic system
that adds the ability to process client requests asynchronously. An asynchronous command
returns a response immediately but returns the item of data or object of interest at some
later time; the client is not blocked while waiting for the returned data. Asynchronous
methods create a new thread of execution to process the command and return the object of
interest whenever that processing is complete. The reason these are broken into two sets of
classes is that asynchronous commands introduce a great deal of complexity, and systems
that do not need such functionality need not be burdened with this additional complexity.
The third type of system, a monitoring system, is an extension of an asynchronous system
and adds the ability to publish data by periodically monitoring the status of internal states,
measurements by various sensors, images from detectors, etc. The classes to support these
activities are shown in Figure 4 as tan colored.

All of the classes to support basic, asynchronous, and monitoring systems, described above
(the yellow, light blue, and tan classes), are used by application systems that are servers
to facilitate communications with remote clients. Those remote clients use “proxy” objects
within their domain of execution to communicate with the remote systems. Corresponding
to the three types of systems, there are three types of proxies: basic, asynchronous, and
monitoring proxies (shown in green in Figure 4). Again, a specific system proxy is an
extension of one of these proxies. Figure 5 shows a weather station. The weather station
system is a monitoring system, so it is extended from the MonitoringSystem class; likewise
its proxy, WeatherStationProxy, is extended from the MonitoringSystemProxy class. The
additional classes in this diagram will be explained later.

Systems, regardless of whether they are basic, asynchronous, or monitoring, are not required
to return an item of data or an object of any kind in response to client commands. Those
commands may merely initiate some required action. They all may, however, return an
exception, if there is an error of some kind. Synchronous commands, including those that do

6

Figure 4: Classes for Basic, Asynchronous, and Monitoring Systems

7

Figure 5: A Weather Station as a System

not return any data, will return an exception to the requesting client, if the command was
not accepted (if some parameter has an incorrect value, for example) or if the processing
ended in an error state. Asynchronous commands always return something immediately: a
signal that indicates the command was valid and accepted, or an exception that indicates the
command was not accepted because of some error in the command. Later, if the asynchronous
command processing ends in an error state, an exception is returned to the client instead
of the expected data. If an asynchronous command returns nothing (return type is ‘void’),
when the processing is complete, the client is sent a message informing that the command
has been completed.

The main goal of these classes may be viewed by an application system in the following
manner. Their purpose, and the method of defining a high-level application interface, is to
allow an application system to merely implement its functional methods, without having to
worry about all of the technical details of how a remote client interacts with the system to
excute commands and receive their results. As Figure 5 shows, the key classes implementing
the communications protocol are automatically generated from the definition of the high-
level interface. This leaves an application free to do what it knows how to do best, viz.
implement the complex methods that make it function successfully.

Finally, an additional point needs to be made about an application system. The method of
defining a high-level application interface outlined here supports the idea of a system that is
hierarchically structured. The parts of such a system are themselves systems, i.e. they are
extensions of basic, asynchronous, or monitoring classes. However, a complex application
system such as the Unit Telescope Mount or the Delay Line System is not required to use

8

this approach. It is entirely free to implement its internal structure as it sees fit. All that
is required is to implement a high-level interface, conforming to the protocols defined here,
that allows that system to be managed by the Supervisory System. With vendor supplied
software systems such as the Unit Telescope Mount, whose contract was negotiated before
this protocol was defined, we will implement an adapter layer that will translate the vendor
supplied protocol to the protocol defined here.

2.1 A Basic System

There are three significant classes (see Figure 4) that implement the functionality needed
by a basic system: the ControlSystem class, the ExecuteClientRequest class, and Control-
SystemServerCommand class. The ControlSystem class is the most important of these. It
implements the following items:

• Defines a system type, instance name, and package name,

• Creates a log file and logger associated with this system,

• Using an assigned port on the host on which it is being executed it creates a server
socket on which it listens for connections by remote clients,

• Has the ability to connect to the Telescope Operator, Database Manager, and Fault
Manager,

• Maintains a list of current connections to any other remote clients,

• Maintains a list of clients currently connected to this server,

• Maintains a list of currently active threads in this system,

• Keeps a complete list of monitor points and commands associated with this system,

• Implements the state model for this system with controlled functionality to change
states.

The ControlSystem class implements the following methods that are accessible by remote
clients. (All method signatures are presented using Java.) In these methods ‘SystemType’
and ‘SystemState’ are enumerations and ‘RemoteConnection’ is a class that contains the sys-
tem name, IP address, and port number of the remote connection. As previously explained,
if these methods fail in some manner, an exception is returned to the client.

• Get the type of system – Synchronous
SystemType getSystemType ()

• Get the name of this system – Synchronous
String getSystemName ()

9

• Get the package name associated with this system – Synchronous
String getPackageName ()

• Get the IP address of the computer on which this system is executing. – Synchronous
String getIPAddress ()

• Get the main server port number on which this system listens for clients – Syn-
chronous

int getMainPort ()

• Get the current value of the backlog parameter – Synchronous
int getBacklog()

• Get the current value of the SO timeout parameter – Synchronous
int getSOTimeout()

• Get the name of the log file currently being used – Synchronous
String getLogFilename ()

• Get the current state of the system – Synchronous
SystemState getSystemState ()

• Get the parameters used in accessing the database manager – Synchronous
RemoteConnection getDatabaseManager ()

• Get the parameters used in accessing the telescope operator – Synchronous
RemoteConnection getTelescopeOperator ()

• Get the parameters used in accessing the fault manager – Synchronous
RemoteConnection getFaultManager ()

• Break this connection – Synchronous
void breakConnection()

• Terminate the execution of this system – Synchronous
void terminate()

• Test the communications network – Synchronous
void test()

• Set the parameters used in accessing the database manager – Synchronous
void setDatabaseManager (String systemName, String address, int port)

• Set the parameters used in accessing the telescope operator – Synchronous
void setTelescopeOperator (String systemName, String address, int port)

• Set the parameters used in accessing the fault manager – Synchronous
void setFaultManager (String systemName, String address, int port)

10

• Set the SO timeout parameter – Synchronous
void setSOTimeout (int timeout)

• Set the loglevel parameter used to select the logging filter level – Synchronous
void setLogLevel (String loglevel)

• Initialize this system in synchronous mode – Synchronous
SystemState initializeSystem ()

• Begin the initialization process, but do not respond as if this were an asynchronous
command – Synchronous

void beginInitializeSystem ()

• Place this system in operational mode – Synchronous
SystemState operateSystem ()

• Place this system in diagnostic mode – Synchronous
SystemState diagnosticModeOn ()

• Place this system back in operational mode – Synchronous
SystemState diagnosticModeOff ()

• Shut down this system in synchronous mode – Synchronous
SystemState shutdownSystem ()

• Begin the shut down process, but do not respond as if this were an asynchronous
command – Synchronous

void beginShutdownSystem ()

• Notify this system in synchronous mode that it is about to be aborted – Synchronous
SystemState aboutToAbortSystem ()

• Begin the about to abort process, but do not respond as if this were an asynchronous
command – Synchronous

void beginAboutToAbortSystem ()

• Place this system in the stopped state – Synchronous
SystemState stopSystem ()

List 1: Methods in a basic system accessible by remote clients

The ExecuteClientRequest is a class that is in charge of receiving requests by a remote client
and executing them. It is created as a separate thread when a connection is accepted from a
remote client. This class uses the ControlSystemServerCommand, which it instantiates as an
object to be used in executing client commands. The ControlSystemServerCommand object
decodes any parameters associated with the client command using the protocol defined in
Section 3, executes the command by calling methods in the ControlSystem object, encodes
the response using the defined protocol, and sends the response back to the client. The

11

reason for creating the classes in this manner is to separate the implementation of the
methods within the system (in ControlSystem) from the mechanics in handling remote clients
(in ExecuteClientRequest) and also from the communications protocol used in formatting
messages between servers and clients (in ControlSystemServerCommand).

This separation is maintained by all extensions from these classes. In fact, another reason
for maintaining this separation is that we can automatically generate classes such as the
WeatherStationServerCommand class (see Figure 5) from the spreadsheets that define that
system’s high-level interface.

2.2 An Asychronous System

An asynchronous command, in general, takes anywhere from a few seconds to a few min-
utes to complete its execution. It usually does not take hours to execute. An asynchronous
system adds the functionality needed to execute such commands by creating threads to
handle their execution. The three classes (see Figure 4) AsynchronousSystem, ExecuteAsy-
chronousClientRequest, and AsynchronousSystemServerCommand extend the basic system
classes ControlSystem, ExecuteClientRequest, and ControlSystemServerCommand respec-
tively and play analogous roles. The class ExecuteAsyncCommand is the thread that is
instantiated to execute an asynchronous command.

All systems have a main port to which a client connects in order to interact with the system.
If a system implements asynchronous commands, there is a second port on which data
and objects returned from asynchronous commands are published. In general these are not
the same port; if they are the same, the system must insure that message packets from
multiple threads are not scrambled. Using this second data port, the AsynchronousSystem
class creates a data server socket on which it listens for connections by remote clients. A
remote client must open a connection to this socket to receive the output from asynchronous
commands.

The additional methods that an asynchronous system implements that are accessible by
remote clients are presented below.

• Get the port number on which this system reports asynchronous data – Synchronous
int getDataPort ()

• Initialize this system – Asynchronous
void initializeSystemAsync (String methodName, String exceptionName)

• Shut down this system – Asynchronous
void shutdownSystemAsync (String methodName, String exceptionName)

• This system should execute the about to abort process – Asynchronous
void aboutToAbortSystemAsync (String methodName, String exceptionName)

List 2: Additional methods in an asynchronous system

12

John
Sticky Note
Clients identify themselves when connecting to the main and data ports (by sending a SYSTEM_IDENTIFICATION message), so the two resulting sockets are associated within the server. Only the client sending an asynchronous command receives the output from the command.

The asynchronous methods presented above are used by a client (they are provided by the
‘proxy’ object) and require two method names as parameters: the name of a method that is
called to receive the data returned from the execution of the command and the name of a
method that is called if an exception is returned. These parameters are general features of
asynchronous commands. The DataListener thread is created within the proxy object and
it calls these methods when the command has been completed.

In implementing asynchronous commands a system may choose to provide greater flexibility
in how a client executes them. This technique was utilized in some of the commands to change
state, e.g. the command to initialize a system. This can be a very complex process within
a system; so there are three versions of this command. One that is executed synchronously,
one that only starts the process of initialization and is also synchronous, and one that
is completely asynchronous. A client that only starts initialization with the synchronous
command must make additonal requests at a later time to discover the state the system.
This technique is overkill to use in all cases, but it is sometimes useful.

2.3 A Monitoring System

A monitoring system publishes internal status data and other types of data periodically.
Each item of such data may be sampled at varying rates and published at varying in-
tervals. In addition, this monitoring capability may be turned on and off. The three
classes (see Figure 4) MonitoringSystem, ExecuteMonitoringClientRequest, and Monitor-
ingSystemServerCommand extend the asynchronous system classes AsynchronousSystem,
ExecuteAsychronousClientRequest, and AsynchronousSystemServerCommand respectively
and implement the functionality needed to support monitoring. The monitoring data are
published on the same data port as asynchronous data. The Monitor class, that is part of
the MonitoringSystem, is a thread that periodically wakes up, samples the necesary data,
and publishes it on the data port.

The additional methods that a monitoring system implements that are accessible by remote
clients are presented below.

• Turn data monitoring on – Synchronous
void monitoringOn ()

• Turn data monitoring off – Synchronous
void monitoringOff ()

• Is data monitoring currently on? – Synchronous
boolean isMonitoring ()

List 3: Additional methods in a monitoring system

A montoring system is usually created by the Executive, which starts and initializes the
system. Monitoring is turned on after the system has been initialized and is in the operational
state. Before this happens the Executive assigns a Data Collector object to the system. The
Data Collector listens for monitor data on the data port assigned to this system.

13

John
Sticky Note
A single thread handles all of the system's monitor points, and runs a periodic task for each unique monitor interval currently defined for the system.

2.4 The State Model

Figure 6: The State Model of a System

An important aspect of every system is the state model. This section will describe that
state model. It is intended to be simple but rich enough to capture the essential features of
MROI systems. The implementation of the state model is such that extended systems cannot
change the semantics of the model. They can insert actions, such as initialization actions,
that are unique to a particular type of system into the model and they can manipulate their
own internal state by calling the appropriate state change methods but they cannot redefine
the model. In addition, all state changes within the lifetime of a system are automatically
recorded in the system’s log.

SystemState is an enumeration of the values of the state model as described in the Supervi-
sory System. All systems are in one of these states at any time.

• UNDEFINED The state after which a system has merely been created as a software
object.

• STARTED The system’s main thread, in which the server listens for remote clients,
has been started but the system has not been initialized.

• INITIALIZING The system is in the process of being initialized.

• INITIALIZED The system has been initialized.

• OPERATIONAL The system is operational.

• DIAGNOSTIC The system is in the diagnostic mode.

• SHUTTINGDOWN The system is in the process of shutting down.

14

• SHUTDOWN The system has been shut down.

• STOPPED The system has been stopped.

• ABORTING The system is in the process of aborting.

• ABORTED The system has aborted.

List 4: SystemState: An Enumeration of the States of a System

When a system is created the constructor initializes all system variables, sets the system
state to ‘UNDEFINED’, and creates the log file and the logger. If any errors are encountered
during this construction process, a Control Exception is thrown; so it is up to the program
that creates the object to deal with this error. No threads in the created object are started.

To start the system, its major thread is started. This action places the system in the START
state. At this point the main server socket is created and it can accept clients on the main
server socket. If this sytem is an asynchronous system, the data socket is also created at
this time. Up to this point these actions are performed by the shell script that is executed
remotely to start the system. This shell script is executed under the control of the Executive.
The Executive then accesses the remote system via the main server socket and data needed
to access the telescope operator, database manager, and fault manager are set. Any system
specific actions associated with the start state are then executed. This concludes the start
phase.

When told to initialize itself, the system attempts to access the telescope operator and fault
manager to verify these links are working. These links are then closed. It then contacts
the database manager and gets its set of monitor points and commands and any other
initialization data it might need, and closes that link. The system then performs any specific
actions needed to initialize this system, which may take some time. These actions are
intended to make sure all subcomponents are started and slave computers are booted and
initialized; it does not include complex system alignment procedures, for example. Basically,
this initialization includes all the actions needed to bring the system to the state where useful
activity can begin. During this time, monitor data are not collected; however, at the end of
this phase, monitor data is ready to be collected. This concludes the initialization phase.

At this point the system is ready to go the operational state. The first action that the
Executive does at this point is to execute the actions necessary to collect monitor data and
start the process of collecting that data. The system is then told to go the operational state.
At this point the system is ready to perform any command. It is at this point that activities
such as the process of aligning the mirrors can begin.

The normal shutdown process begins when the system receives the “shutdownSystem()”
command. There is a precisely defined set of actions that take place within the system at
this time.

1. All threads processing asynchronous commands within the system are told to terminate
gracefully.

15

2. Next, all remotely connected clients, except the client issuing the shutdown command,
are told their connections are about to be broken and their connections are then ter-
minated. This action terminates all external connections except the one issuing the
shutdown command and it also terminates the threads processing those requests.

3. At this point any activity collecting monitor data is turned off.

4. The system then takes any system specific actions necessary to stop its internal sub-
components, which probably means placing them in a standby state.

5. This concludes the shutdown actions and the system is in the SHUTDOWN state.

Once the system is in the SHUTDOWN state it can be told either to re-initialize or to
stop. These commands can only be given by the remote client, usually the Executive, that
issued the shutdown command. No other external client is accepted by the system after the
shutdown process begins. If some pathological condition occurs, it is assumed that if the
system is in the SHUTDOWN or STOPPED state, which could be determined by examining
the system’s log file for example, the operating system could kill the main system process
without damage to the system.

One can also stop the system by issuing the “aboutToAbortSystem()” command. However,
this is not a graceful shutdown. Its purpose is to give the system an advance warning in
order to save any critical data before being terminated. The system may be aborted at any
point after this command is given, so only minimal activities should be undertaken. Even if
these actions are successfully carried out, the system can only be terminated; it cannot be
re-initialized.

The “normal” method of terminating the system is to issue a change of state command as out-
lined above, either a “shutdownSystem” or an “aboutToAbortSystem” command. However,
it is possible for a client, which should be the Executive, to issue a “terminate” command.

The “terminate” method is the last thing that is executed in the system’s “run” method.
Its action is dependent on the state the system is in. For example, if it was called in an
operational state, a graceful shutdown is attempted. Basically, what one wishes to accomplish
is to terminate all connections and threads in an orderly manner and take whatever actions
are necessary to achieve an orderly shutdown of all sub-systems within this system.

In addition to stopping the system by issuing commands, there is a timeout associated with
the system. After the initial client is accepted, if the server has no clients within a certain
window of time, the timeout will be initiated and the system will shutdown of its own
accord, by executing the “terminate” command. Under normal circumstances, the Executive
prevents this from happening by issuing a “getSystemState” command periodically. If all
external communication with the system is lost, this timeout mechanism will stop the system.

16

3 Communications Protocol

This section will discuss the protocol by which an arbitrary remote client interacts with such
a system. A client formats a message and sends it to the server system. The server then
processes the message, formats a response, and sends the response to the client.

This protocol is based on TCP/IP. The specifics of how various data items are encoded and
decoded within the message format will be discussed shortly.

The first item within any message exchanged between servers and clients is a single byte
that indicates the type of message. Its valid values are listed below.

• UNKNOWN 0. Not intended to be used.

• SYSTEM IDENTIFICATION 1. Used by both clients and servers to identify
their system in the connection procedure.

Messages sent from a server to a client

• EXECUTED 2. Server to client: a command has been executed successfully.

• EXECUTED NULL 3. Server to client: a command has been executed successfully
but the result was null.

• EXCEPTION 4. Server to client: an executing command threw an exception.

• ACCEPTED 5. Server to client: an asynchronous command has been accepted for
execution.

• MONITOR DATA 6. Indicates monitor data sent from server to client.

Messages sent from a client to a server implemented in a basic sys-
tem

• GET SYSTEM TYPE 7. Client to server: get the type of system.

• GET PACKAGE NAME 8. Client to server: get the package name associated
with the system.

• GET SYSTEM NAME 9. Client to server: get the name of this system.

• GET IP ADDRESS 10. Client to server: get the IP address of the computer on
which this system is executing.

• GET MAIN PORT 11. Client to server: get the main server port number.

• GET BACKLOG 12. Client to server: get the current value of the backlog param-
eter.

17

• GET SO TIMEOUT 13. Client to server: get the current value of the so timeout
parameter.

• GET LOG FILENAME 14. Client to server: get the name of the log file currently
being used.

• GET SYSTEM STATE 15. Client to server: get the current state of the system.

• GET DATABASE MANAGER CONNECTION 16. Client to server: get the
parameters used in accessing the database manager.

• GET TELESCOPE OPERATOR CONNECTION 17. Client to server: get
the parameters used in accessing the telescope operator.

• GET FAULT MANAGER CONNECTION 18. Client to server: get the pa-
rameters used in accessing the fault manager.

• BREAK CONNECTION 19. Client to server: break this connection.

• TERMINATE 20. Client to server: terminate the execution of this system.

• TEST 21. Client to server: Used only to test the communications network.

• SET DATABASE MANAGER 22. Client to server: set the parameters used in
accessing the database manager.

• SET TELESCOPE OPERATOR 23. Client to server: set the parameters used
in accessing the telescope operator.

• SET FAULT MANAGER 24. Client to server: set the parameters used in ac-
cessing the fault manager.

• SET SOTIMEOUT 25. Client to server: set the so timeout parameter.

• SET LOGLEVEL 26. Client to server: set the loglevel parameter used to select
the logging filter level.

• INITIALIZE SYSTEM 27. Client to server: initialize this system in synchronous
mode.

• BEGIN INITIALIZE SYSTEM 28. Client to server: begin the initialization
process, but do not respond as if this were an asynchronous command.

• OPERATE SYSTEM 29. Client to server: place this system in operational mode.

• DIAGNOSTIC MODE ON 30. Client to server: place this system in diagnostic
mode.

• DIAGNOSTIC MODE OFF 31. Client to server: place this system back in op-
erational mode.

18

• SHUTDOWN SYSTEM 32. Client to server: shut down this system in syn-
chronous mode.

• BEGIN SHUTDOWN SYSTEM 33. Client to server: begin the shut down pro-
cess, but do not respond as if this were an asynchronous command.

• ABOUT TO ABORT SYSTEM 34. Client to server: notify this system in syn-
chronous mode that it is about to be aborted.

• BEGIN ABOUT TO ABORT SYSTEM 35. Client to server: begin the about
to abort process, but do not respond as if this were an asynchronous command.

• STOP SYSTEM 36. Client to server: place this system in the stopped state.

Messages sent from a client to a server implemented in an asynchronous
system

• GET DATAPORT 37. Client to server: get the port number on which this system
reports asynchronous data.

• INITIALIZE SYSTEM ASYNC 38. Client to server: initialize this system in
asynchronous mode.

• SHUTDOWN SYSTEM ASYNC 39. Client to server: shut down this system
in asynchronous mode.

• ABOUT TO ABORT SYSTEM ASYNC 40. Client to server: this system
should execute the about to abort process in asynchronous mode.

Messages sent from a client to a server implemented in a monitoring
system

• MONITOR ON 41. Client to server: turn data monitoring on.

• MONITOR OFF 42. Client to server: turn data monitoring off.

• IS MONITORING 43. Client to server: is data monitoring currently on?

Messages sent from a client to a server implemented in an extended
system

• SYNCHRONOUS COMMAND 44. Indicates a general synchronous command
sent by a client to a server.

• ASYNCHRONOUS COMMAND 45. Indicates a general asynchronous com-
mand sent by a client to a server.

List 5: MessageType: An Enumeration of Types of Messages

19

For message types 1 – 43 if any parameters are required they immediately follow the byte indi-
cating the message type. They are encoded as binary data as described in Section 3.1. These
messages represent all the “built-in” commands implemented in the basic, asynchronous, and
monitoring classes from which all other systems are extended.

A message of type SYNCHRONOUS COMMAND is used by any extended system that
defines a synchronous command. It is followed by:

• command name, encoded as a String

• argument 1 encoded

• argument 2 encoded

• argument 3 encoded

• . . .

A message of type ASYNCHRONOUS COMMAND is used by any extended system that
defines an asynchronous command. It is followed by:

• command name, encoded as a String

• command time, encoded as a long integer

• argument 1 encoded

• argument 2 encoded

• argument 3 encoded

• . . .

The command time is the time the command was sent to the server and is used as a tag to
distinguish multiple commands of the same name sent in overlapping windows of time.

The first item of data returned by the server to the client is an enumeration indicating
the type of response: EXECUTED, EXECUTED NULL, EXCEPTION, ACCEPTED. The
second item of data is the returned data of interest, if anything was supposed to be returned.
If EXECUTED is returned, it is followed by the returned data, unless the return-type of
the command was ‘void’. If EXECUTED NULL is returned, the command was successfully
executed but the returned object was null. If EXCEPTION is returned, the command was
not successfully executed and it is followed by the exception itself. ACCEPTED is returned
only by an asynchronous command and indicates that the command was accepted and is
being executed. If the command was not accepted, an exception is returned.

If anything is returned by executing an asynchronous command it is returned on the data
output socket. For asynchronous commands, the message that is returned on the data output
socket is similar to the format for synchronous commands and is as follows.

20

• message-type either EXECUTED, EXECUTED NULL, or EXCEPTION

• command name the command name to which this returned data is in response

• command time the command time used to identify the command to which this re-
turned data is in response

• returned item of data may be null or an exception, depending on message type

The format of monitor data requires special consideration. All monitor data are identified
by the MONITOR DATA message type. Its general format is as follows.

• MONITOR DATA the message type indicating monitor data

• system instance identifier a short integer assigned by the database that identifies
this system instance

• monitored property identifier a short integer assigned by the database that identi-
fies this monitored property

• sampling time the time at which the monitored property was sampled

• monitor data the actual data that was sampled, encoded as described in Section 3.1

The ‘system instance identifier’ and the ‘monitored property identifier’ are obtained from
the Database Manager when the system is initialized and gets its list of monitored properties
and commands.

3.1 Encoding and decoding types of data

The permitted data types are:

• boolean single byte: either 0 or 1

• byte 8-bit signed binary integer

• short 16-bit signed binary integer

• int 32-bit signed binary integer

• long 64-bit singed binary integer

• float IEEE 32-bit single precision floating point number

• double IEEE 64-bit double precision floating point number

• char 16-bit Unicode character

21

John
Sticky Note
These are actually static ids which are generated from the worksheets, and so get embedded in the generated code.

John
Sticky Note
There is no chunking by simultaneity, i.e. each monitor point has independent timestamps. This is to match the database structure.

The normal method for transmitting a set of consecutive samples is as a FloatSample array, i.e. with a timestamp associated with each sample. However, regularly-sampled data (esp. fast-sampled) need not have a timestamp for every sample. How this is encoded is TBD.

John
Sticky Note
This component of the message is missing if the return type is void.

• String an array of bytes that is the UTF-8 encoding of the character string, preceded
by the length of the array as a short

• enumerations the ordinal value of the enumerated item as a byte

• any DataStreamable class ‘DataStreamable’ is an interface that requires methods to
‘read’ and ‘write’ data associated with input and output streams

• 1-D arrays of the above the array of items is preceded by the number of items in the
array as an int

There is a collection of static methods in the Protocol class that encodes and decodes all of
these data types. All of these methods throw “java.io.IOException”. All of the binary data
is in “network” order, i.e. big-endian bit order.

3.1.1 Methods for encoding data

import java.io.DataInputStream

import java.io.DataOutputStream

public static void encode (boolean x, DataOutputStream out)

public static void encode (byte x, DataOutputStream out)

public static void encode (short x, DataOutputStream out)

public static void encode (int x, DataOutputStream out)

public static void encode (long x, DataOutputStream out)

public static void encode (float x, DataOutputStream out)

public static void encode (double x, DataOutputStream out)

public static void encode (char x, DataOutputStream out)

public static void encode (String x, DataOutputStream out)

public static void encode (Enum<?> x, DataOutputStream out)

public static void encode (DataStreamable x, DataOutputStream out)

public static void encode (boolean[] x, DataOutputStream out)

public static void encode (byte[] x, DataOutputStream out)

public static void encode (short[] x, DataOutputStream out)

public static void encode (int[] x, DataOutputStream out)

public static void encode (long[] x, DataOutputStream out)

public static void encode (float[] x, DataOutputStream out)

public static void encode (double[] x, DataOutputStream out)

public static void encode (char[] x, DataOutputStream out)

public static void encode (String[] x, DataOutputStream out)

public static void encode (Enum<?>[] x, DataOutputStream out)

public static void encode (DataStreamable[] x, DataOutputStream out)

22

3.1.2 Methods for decoding data

public static boolean decodeBoolean (DataInputStream in)

public static byte decodeByte (DataInputStream in)

public static short decodeShort (DataInputStream in)

public static int decodeInt (DataInputStream in)

public static long decodeLong (DataInputStream in)

public static float decodeFloat (DataInputStream in)

public static double decodeDouble (DataInputStream in)

public static char decodeChar (DataInputStream in)

public static String decodeString (DataInputStream in)

public static Enum<?> decodeEnum (Enum<?> s, DataInputStream in)

public static DataStreamable decode (DataStreamable x, DataInputStream in)

public static boolean[] decodeBooleanArray (DataInputStream in)

public static byte[] decodeByteArray (DataInputStream in)

public static short[] decodeShortArray (DataInputStream in)

public static int[] decodeIntArray (DataInputStream in)

public static long[] decodeLongArray (DataInputStream in)

public static float[] decodeFloatArray (DataInputStream in)

public static double[] decodeDoubleArray (DataInputStream in)

public static char[] decodeCharArray (DataInputStream in)

public static String[] decodeStringArray (DataInputStream in)

public static Enum<?>[] decodeEnumArray (Enum<?> s, DataInputStream in)

public static Object decodeArray (DataStreamable x, DataInputStream in)

23

John
Sticky Note
Images (2d arrays) will likely be encoded as FITS images.

Complicated data structures could be encoded as FITS binary tables. These would have one timestamp per structure.

4 Defining a High-level System Interface

In this section we will discuss how the high-level interface to a system is defined.

Each type of system in MROI is described using a set of Excel spreadsheets that provide a
complete description of the high-level interface to that system. These spreadsheets provide
complete information about all monitor points and all control commands, together with
their fault conditions and parameters, that are used to interact with the system. There
are five worksheets in a spreadsheet that describe a system: the system worksheet, used to
describes the system as a whole; the monitor worksheet, which is used to define all monitor
points in detail; the fault worksheet, used to define faults associated with monitor points; the
control worksheet, which defines all commands that control the system; and, the parameters
worksheet, which defines parameters associated with control commands or with the system
as whole.

The spreadsheet, in the form of these five worksheets, is stored in XML format. A program
then parses the XML file to extract the data in the worksheets, which is used to create a
model of the system. This model is then used as input to a Java-based code generation
framework that generates whatever code is necessary to integrate the system into the MROI
framework.

We will now define the contents of these worksheets in greater detail. Each column in the
worksheet is described together with an indication of the type of entry is expected in that
column.

4.1 System Worksheet

The System worksheet is shown in Figure 7. This worksheet describes the system as a whole.
One can describe more than one system, as in the example. The first entry is the system as a
whole (the Environmental Monitoring System in this case) followed by its component systems
(a Weather Station in this case). This is only an example, and the real worksheet would
include entries fror the all sky camera, dust monitor, etc. Only the first entry includes the
work package and defining document, since it is assumed that all components are described
by the same document.

4.1.1 Columns in The System worksheet

• Name (name) The official name of this type of system, which is usually short.

• Description (text) A brief description of the system.

• Package (text) The name of the Java package associated with this system.

• Full Name (text) The full name of this type of system.

• Extends (text) The name of the class that this system extends, or ‘none’ if is does
not extend anything.

24

Figure 7: System Interface Definition – The System Worksheet

25

• Parent System (text) The name of the parent system, or ‘none’ if it is not part of
a larger system.

• Implement (yes/no) Should this system be implemented? (It may merely be a pack-
age repository for a collection of independent systems.)

• Is Asynchronous (yes/no) Does this system implement asynchronous commands?

• Is A Monitor (yes/no) Does this system publish monitor data?

• Work Package (text) The name of the work package associated with this system.

• Document Title (text) The title of the document that describes this system.

• Document Number (text) The number of the document that describes this system.

• Document Issue (text) The particular version of the document that describes this
system.

• Document Date (date) The date of the document that describes this system.

4.2 Monitor Worksheet

The Monitor worksheet is shown in Figure 8. This worksheet defines all monitored properties
in the system, including all status data, image data, and other data that might be calculated
in the course of fulfilling its functions.

4.2.1 Columns in the Monitor worksheet

• Name (name) The name of this monitor point, which must be unique within the
system.

• System (name) The name of the type of system to which this monitor point belongs.

• Description (text) A brief description of this monitor point.

• Returns (text) The name of the type of object, basic or extended data type that is
returned by this monitor point.

• Can Be Null (yes/no) Can this monitor point return a null value?

• Throws Exception (yes/no) Can this monitor point throw an exception?

• Asynchronous (yes/no) Is this monitor point implemented using an asynchronous
command?

• Data Unit (text) The units used to store this monitor point in the archive. (or
‘none’ if units do not apply.)

26

John
Sticky Note
Monitor points are asynchronous if it takes time to capture and return the data after it is requested. The UTCS standard socket interface is like this.

Figure 8: System Interface Definition – The Monitor Worksheet

27

John
Sticky Note
Allen is now (again) thinking about also including the default interval at which the monitor item is sent to the Data Collector.
This can be a fixed interval if the system doesn't want to support varying it.

• Minimum Value (number) The minimum value of this monitor point. (or ‘none’
if this is not applicable.)

• Maximum Value (number) The maximum value of this monitor point. (or ‘none’
if this is not applicable.)

• Default Value (number) The default value of this monitor point. (or ‘none’ if this
is not applicable.)

• System Unit (text) The units used by the Supervisory System in conjunction with
this monitor point. (or ‘none’ if units do not apply.)

• Raw Data Type (name) The raw data type associated with this monitor point that
is used internally in the system, i.e. the type used internally in measuring its value.
(or ‘none’ if this notion isn’t applicable or it is the same as the system value.)

• Scale (number) The scale factor used to convert the raw value to its system value,
or ‘none’ if no conversion is necessary. The formula is: system value = scale factor ∗
raw value + offset.

• Offset (number) The offset factor used to convert the raw value to its system value,
or ‘none’ if no conversion is necessary. The formula is: system value = scale factor ∗
raw value + offset.

• Mode (name) The operating mode (startup, initialization, operational, diagnostic,
shutdown, or any) in which this monitor point may be sampled.

• Implement (yes/no) Should the method to get the value of this monitor point be
automatically generated? (If not, a signature will be generated that requires this method
to be hand crafted.)

• Archive Interval (secs) (number, in seconds) What is the interval of time that this
property should be stored in the archive?

• Archive Only On Change (yes/no) Should the value of this property be archived
only when it changes?

• Display Unit (text) The unit, associated with this property, that is used in graphical
displays.

• Graph Minimum (number) The minimum value used in graphical displays.

• Graph Maximum (number) The maximum value used in graphical displays.

• Graph Title (text) The title used in graphical displays.

28

4.3 Fault Worksheet

The Fault worksheet is shown in Figure 9. The Fault worksheet defines all faults associated
with the system. These fault definitions may either be associated with a particular monitored
property or with the system as a whole.

4.3.1 Columns in the Fault worksheet

• Fault Name (name) The name of the fault, which must be unique within this sys-
tem.

• System (name) The name of the type of system associated with this fault.

• Monitor Point (name) The name of the monitored property associated with this
fault, if any. If this fault is associated with the system as a whole, ‘none’ should be
entered.

• Description (text) A description of this fault.

• Fault Condition (text) A boolean condition that defines this fault.

• Fault Severity (name) The severity associated with this fault.

• Fault Action (list) A list of actions to be taken if this fault occurs. (Not defined at
this time.)

4.4 Control Worksheet

The Control worksheet is shown in Figure 10. This Control worksheet defines all control
commands by which the system may be managed. In general, monitor points do not change
the internal state of a system; they only retrieve data. Control commands are intended to
change the internal state of the system.

4.4.1 Columns in the Control worksheet

• Name (name) The name of the control command, which must be unique within this
system.

• System (name) The name of the type of system associated with this control com-
mand.

• Description (text) A description of this control command.

• Returns (text) The name of the object, basic or extended data type that is returned
by the method executing this command.

• Can Be Null (yes/no) Can this command return a null value?

29

Figure 9: System Interface Definition – The Fault Worksheet

Figure 10: System Interface Definition – The Control Worksheet

30

John
Sticky Note
Allen's latest thinking (from a suggestion by John Seamons) is that the setXxxInterval commands would be automatically generated from the monitor worksheet and wouldn't need to be specified in the control worksheet.

• Throws Exception (yes/no) Can this command throw an exception?

• Asynchronous (yes/no) Is the method executing this command an asynchronous
method?

• Mode name The operating mode (startup, initialization, operational, diagnostic,
shutdown, or any) in which this control command may be executed.

• Implement (yes/no) Should the method to execute this control command be auto-
matically generated? (If not, a signature will be generated that requires this method to
be hand crafted.)

4.5 Parameters Worksheet

The Parameters worksheet is shown in Figure 11. This worksheet defines any parameters
that are associated with the control commands. Parameters may also be defined that apply
to the system as a whole.

4.5.1 Columns in the Parameters worksheet

• Parameter Name (name) The name of this parameter, which must be unique
within the command with which it is associated.

• System (name) The name of the type of system associated with this parameter.

• Command (name) The name of the type of control command associated with this
parameter. If this parameter is associated with the system as a whole, rather than a
specific command, then ‘none’ should be entered.

• Description (text) A description of this control command.

• Required (yes/no) I sthis parameter required?

• Data Type (name) The name of the data type of this parameter that is used by the
Supervisory System.

• Data Unit (text) The unit, associated with this parameter, that is used by the Su-
pervisory System.

• Minimum Value (number) The minimum value allowed for this parameter in units
used by the Supervisory System.

• Maximum Value (number) The maximum value allowed for this parameter in units
used by the Supervisory System.

• Default Value (number) A default value for this parameter in units used by the
Supervisory System.

31

Figure 11: System Interface Definition – The Parameters Worksheet

32

John
Sticky Note
Set interval to zero (if allowed) disables monitor point

• System Unit (name) The unit, associated with this parameter, that is required by
this system.

• Raw Data Type (name) The internal data type associated with the command that
requires this parameter.

• Scale (number) The scale factor used to convert the system value to its internal value,
or ‘none’ if no conversion is necessary. The formula is: internal value = scale factor
∗ system value + offset.

• Offset (number) The offset factor used to convert the system value to its inter-
nal value, or ‘none’ if no conversion is necessary. The formula is: internal value
= scale factor ∗ system value + offset.

4.6 The Code Generation Framework

Using the spreadsheets (Figures 7 – 11) three files are generated containing the Java
classes: WeatherStationBase, WeatherStationProxy, and WeatherStationServerCommand.
These files are completely implemented and handle all the encoding and decoding of
message formats passed between the server and clients. The actual WeatherStation class,
which is the internal implementaion of the weather station system, only has to extend
WeatherStationBase, which means that it is required to implement the abstract methods in
the base class. The signatures of the generated methods in these three classes are given below.

Class and methods defined in file WeatherStationBase.java:

abstract public class WeatherStationBase extends MonitoringSystem

public WeatherStationBase (String systemName, String hostAddress,

int portNumber, int dataPort, int backlog) throws ControlException

abstract public void monitorOn();

abstract public void monitorOff();

abstract public boolean isMonitoring();

abstract public Temperature getTemperature () throws ControlException;

abstract public Speed getWindSpeed () throws ControlException;

abstract public Angle getWindDirection () throws ControlException;

abstract public Duration getTemperatureInterval ();

abstract public Duration getWindSpeedInterval ();

abstract public Duration getWindDirectionInterval ();

abstract public void setTemperatureInterval

(Duration temperatureInterval);

abstract public void setWindSpeedInterval

(Duration windSpeedInterval);

abstract public void setWindDirectionInterval

(Duration windDirectionInterval);

abstract public Speed getAverageWindSpeed

33

(Duration minutes);

Class and methods defined in file WeatherStationProxy.java:

public class WeatherStationProxy extends MonitoringSystemProxy

public WeatherStationProxy (String systemName, String hostAddress,

int portNumber, Identification clientId, ControlLogger logger)

public Temperature getTemperature () throws ControlException

public Speed getWindSpeed () throws ControlException

public Angle getWindDirection () throws ControlException

public Duration getTemperatureInterval () throws ControlException

public Duration getWindSpeedInterval () throws ControlException

public Duration getWindDirectionInterval () throws ControlException

public void setTemperatureInterval

(Duration temperatureInterval) throws ControlException

public void setWindSpeedInterval

(Duration windSpeedInterval) throws ControlException

public void setWindDirectionInterval

(Duration windDirectionInterval) throws ControlException

public void getAverageWindSpeed (Duration minutes, String methodName,

String exceptionName) throws ControlException

Class and methods defined in file WeatherStationServerCommand.java:

public class WeatherStationServerCommand extends

MonitoringSystemServerCommand

public WeatherStationServerCommand (WeatherStation server,

DataOutputStream out, DataInputStream in)

public void getTemperature () throws IOException

public void getWindSpeed () throws IOException

public void getWindDirection () throws IOException

public void getTemperatureInterval () throws IOException

public void getWindSpeedInterval () throws IOException

public void getWindDirectionInterval () throws IOException

public void setTemperatureInterval () throws IOException

public void setWindSpeedInterval () throws IOException

public void setWindDirectionInterval () throws IOException

public void getAverageWindSpeed () throws IOException

This document has had as its intention to illustrate the structure of a system from the Su-
pervisory System’s perspective. In doing so we have emphasized Java as an implementation
language. Discussions are underway to enlarge this perspective to accommodate systems
implemented in other languages, such as C or C++.

34

5 Change History

5.1 Version 0.9

Version 0.9 was an initial draft that was distributed internally for review. There were no
versions prior to Version 0.9.

35

6 Additional information

References

[1] A. Farris, MROI Supervisory System: A Conceptual Design Overview, internal document
(WP 4.09.03 Version 1.0), February 20, 2009.

[2] A. Farris, The MROI Monitor and Configuration Database, internal document number
INT-409-ENG-0030 rev 1.2, September 3, 2009.

[3] A. Farris, RDM: A software system based on the relational data model for supporting
the definition and collection of data for scientific applications, internal document (WP
4.09.03 Version 1.1), August 11, 2009. (Not yet published.)

Reference [1] gives an overview of the structure of the Supervisory System. References [2]
and [3] provide more information about the MROI Monitor and Configuration Database.
All of the above documents may be found in the MROI document repository (which is
forthcoming).

36

