FTT/NAS & FLC Conceptual Design Review 14th September 2010

Introduction

Reviewing conceptual design of two systems:

- FTT/NAS
 - For science operations
 - Target acquisition (NAS)
 - Correction of atmospheric tip-tilt variations (FTT)
- FLC
 - For commissioning and integration
 - Ready in time for 1st Unit Telescope
 - NAS-like functions
 - Standalone capability

Outline of this Presentation

- Topic-by-topic presentation, **questions** after each topic:
 - All FTT/NAS topics (including "system design" and "interfaces" for FLC)
 - Derived Requirements
 - System Design (also for FLC)
 - Optical Layouts
 - Camera Selection
 - Conceptual Opto-Mechanical Design
 - Conceptual Thermal Design
 - Conceptual Electronics Design
 - Conceptual Software Design
 - Lifetime and Maintenance
 - Interfaces (also for FLC)
 - Summary and path forward
 - FLC topics, only where design differs from FTT/NAS

FTT/NAS Top-level Requirements (i)

- See INT-403-ENG-0003
- Key requirements:
 - Acquisition and fast-guiding modes
 - Limiting sensitivity $\geq 16^{\text{th}}$ magnitude
 - Zero-point stability $\leq 0.060''$ for $\Delta T = 5 \circ C$
 - $T T_{ambient} \le 2 \degree C$ for components on Nasmyth optical table; power consumption (dissipation?) < 250 W
 - Space constraints on Nasmyth optical table

FTT/NAS Top-level Requirements (ii)

- Key requirements (cont.):
 - Time-varying objective point for dispersion compensation and/or off-axis reference star
 - Streaming of diagnostic data to ISS
 - Dither function synchronised to UTC

FLC Top-level Requirements

- See INT-403-TSP-0107
- Key requirements:
 - Operating roles with or without ISS
 - All FTT/NAS operating modes except FTT mode
 - FOV $\ge 60''$
 - Limiting sensitivity $\geq 10^{\text{th}}$ magnitude
 - Stability $\leq 1''$ for $\Delta T = 5 \circ C$
 - Operation down to $T_{ambient} \ge -15^{\circ}C$
 - Streaming of diagnostic data to ISS

14th September 2010

FTT/NAS Derived Requirements

FTT/NAS Derived Requirements: Assumptions

- Single camera for acquisition and fast tip-tilt sensing; same focusing optics for all modes
- Use of EMCCD with:
 - Format 512×512 pixels
 - Read noise 50 electrons RMS

FTT/NAS Derived Requirements

- Pixel scale between 0.12 and 0.2 arcsec/pixel
 - Lower limit set by FOV requirement
 - Upper limit for centroiding accuracy
- FTT mode sub-frame size $\geq 3.6'' \times 3.6''$
 - i.e. 18 to 30 pixels square
 - Allows for worst-case field rotation over 300 second observation when using an off-axis reference at 10" separation

FTT/NAS Derived Requirements: Image Quality

Element	Degree of freedom	Tolerance	
Dichroic	δχ		
cc	δу		
**	δz	> 5 mm	
	$\delta \theta_x$	0.37°	
66	δθy	0.37°	
	$\delta \theta_z$		
Focusing lens	δx	> 5 mm	
**	δy	> 5 mm	
**	δz	0.35 mm	
	$\delta \theta_{\rm x}$	0.93°	
**	δθy	0.93°	
**	$\delta \theta_z$		
Fold mirror #1	δx		
**	δу		
66	δz	0.17 mm	
**	$\delta \theta_{\rm x}$	0.65°	
cc	δθy	1.9°	
**	$\delta \theta_z$		

Fold mirror #2	δx		
**	δy		
**	δz	0.22 mm	
**	$\delta \theta_x$	0.77°	
**	δθγ	1.2°	
**	$\delta \theta_z$		
FTT/NAS sensor	δx		
**	δy		
**	δz	0.35 mm	
**	$\delta \theta_x$	> 5°	
**	δθγ	> 5°	
**	$\delta \theta_z$		

14th September 2010

FTT/NAS Derived Requirements: Stability

Element	Degree of freedom	Budget allocation	 Element	Degree of freedom	Budget allocation
Dichroic	δx		Focusing lens	δx	0.47 µm
**	δy		"	δy	0.35 µm
**	δz		**	δz	250 µm
**	$\delta \theta_x$	0.047"	**	$\delta \theta_x$	0.75″
**	$\delta \theta_y$	0.045"	**	δθy	0.70″
"	$\delta \theta_z$		**	$\delta \theta_z$	n/a
Fold mirror #1	δχ		Fold mirror #2	δx	
**	δy		"	δy	
**	δz	0.59 µm	"	δz	0.31 µm
**	$\delta \theta_x$	0.090"	**	$\delta \theta_x$	0.064"
**	$\delta \theta_y$	0.049"	"	$\delta \theta_y$	0.074"
"	$\delta \theta_z$		**	$\delta \theta_z$	
FTT/NAS sensor	δχ	0.47 µm			
	δy	0.35 μm			
	δz	250 μm			
	$\delta \theta_{\rm x}$				
**	$\delta \theta_y$				
**	δθz	2.32"			

FTT/NAS Derived Requirements: Thermal Management (i)

- Assumptions:
 - EMCCD camera in environmentally-controlled enclosure:
 - Camera enclosure temperature is controlled to ensure exterior surface within 2 °C of ambient
 - Camera environment controlled at all times, so always ready to be switched on
 - Heat removed from camera head and enclosure by fluid and exchanged into one of telescope coolant loops

FTT/NAS Derived Requirements: Thermal Management (ii)

- Derived requirements from thermal modelling:
 - Max. enclosure internal air temperature: 30 °C
 - Min. enclosure internal air temperature: 0 °C
 - Min. internal air/external surface temperature differential: 3 °C (goal 8 °C)
 - Enclosure air dew point: coldest internal component -5 °C
 - Enclosure residual heat 5 W
 - Emissivity of enclosure outer surface > 0.7
 - Residual camera heat 20 W [TBC]
 - Camera enclosure space envelope: $340 \text{ mm} \times 300 \text{ mm} \times 350 \text{ mm} \text{ max}$.
 - CPU and interface electronics power dissipation allowance 180 W
 - Camera interface and controller power dissipation allowance 70 W
 - Power consumption 350 W

14th September 2010FTT/NAS & FLC Conceptual Design Review

FTT/NAS Derived Requirements: Closed-loop Bandwidth

- Assumptions:
 - Frame rate 1 kHz
 - Compute latency 100 μs
- Derived requirements:
 - Readout latency req. 1130 μ s (for 40 Hz 3dB b/w)
 - Readout latency goal 790 µs (for 50 Hz 3dB b/w)

FTT/NAS Derived Requirements: Limiting Sensitivity (i)

• Adopted tip-tilt residual error budget for observation of 16th magnitude AGN in 0.7" seeing (15 Hz b/w):

Tilt error	RMS error /milliarcsec
UT residual mount error	20
UT residual wind shake	30
Residual seeing tilt	30
Speckle noise centroiding error	15
Detection noise centroiding error	34
Total	60

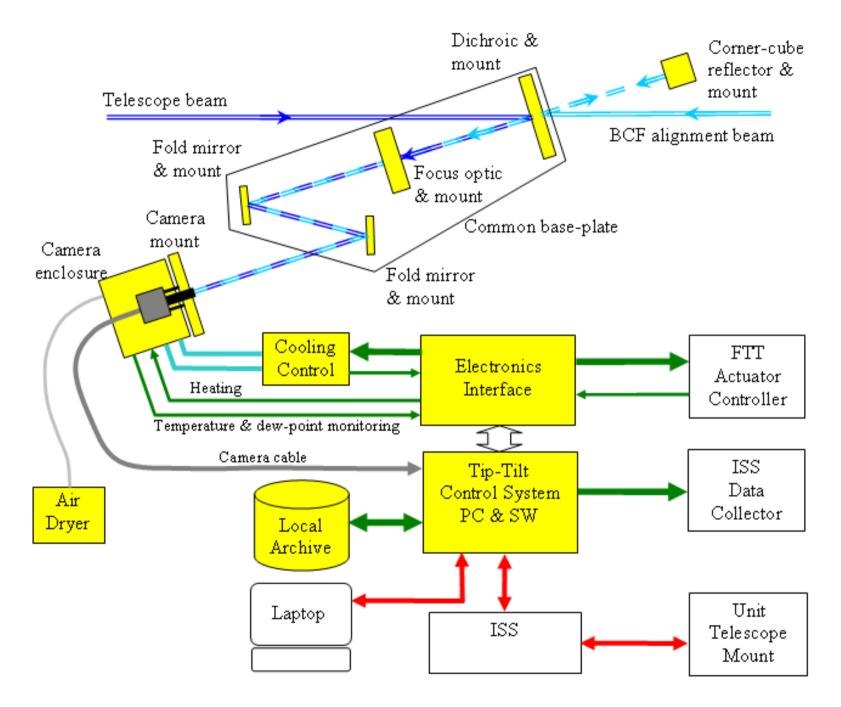
FTT/NAS Derived Requirements: Limiting Sensitivity (ii)

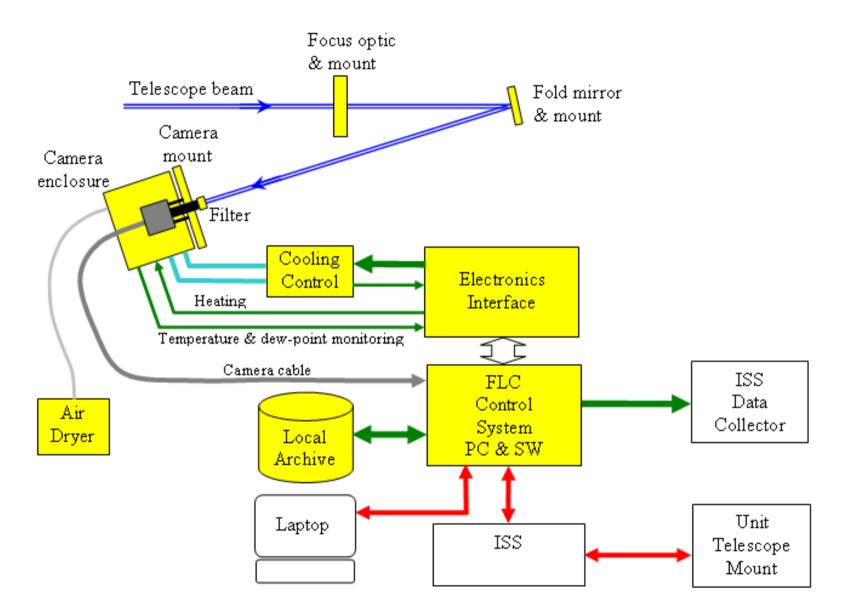
- Would require 102% throughput for FTT optics (dichroic, focusing optic, fold mirrors) to meet budget, assuming readout noise negligible
- If we assume (conservatively) 85% throughput, tiptilt residual is 2% over budget
 - Corresponds to extra 0.5% visibility loss in H band
 - Budget is satisfied at magnitude 15.8
- Need EMCCD gain ≥ 250 for 50e⁻ readout noise to be negligible

FTT/NAS Derived Requirements: Dynamic Range

- Assumptions:
 - FTT mode frame rate 1 kHz (except for faintest objects)
 - NAS mode: exposure time independent of frame rate; minimum exposure 1 ms
- Derived requirements:
 - Two EMCCD gain settings needed to allow observations spanning magnitudes 3.3–16 in good seeing
 - 2-magnitude overlap between settings allows for target and calibrator to be observed with same gain setting

FTT/NAS Derived Requirements


Questions?


14th September 2010

System Design: FTT/NAS & FLC

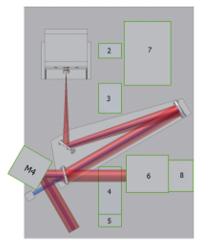
System Design

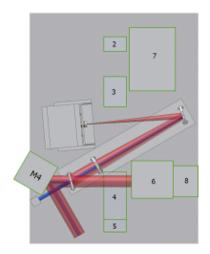
- Electron-Multiplying CCD needed to meet FTT closed-loop bandwidth and limiting sensitivity requirements
- Chosen to use same camera for target acquisition (NAS mode) and fast tip-tilt correction, with fixed pixel scale
 - Need 2.5 pixels across short-exposure FWHM for accurate centroiding
 - Hence minimum CCD format 500×500 pix. for NAS FOV
 - Custom 23 × 23 pixel subframe readout for FTT mode \Rightarrow pixel scale > 0.15"/pix
- EMCCDs must be operated above 0 °C, non-condensing
 - Hence camera enclosed in a thermally-controlled environment, controlled at all times
- Opto-mechanical design driven by requirement to maintain image position stable to 0.5 μ m over $\Delta T = 5 \ ^{\circ}C$
 - Optical mounts without adjusters
 - Aluminium mounts with symmetric designs

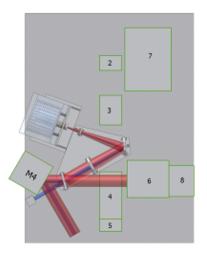
Relationship between FTT/NAS & FLC

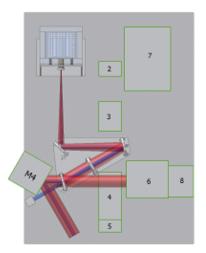
- FLC delivered end July 2011 vs. ~Feb 2012
- Common aspects:
 - EMCCD camera
 - Allows interchange of camera and software
 - Thermally-controlled camera enclosure
 - Camera mount
 - Computer and interface electronics
 - FLC software is subset of FTT/NAS software
 - Except for additional functionality specified by UTM vendor

System Design


Questions?


14th September 2010


FTT/NAS Optical Layouts


Four Candidate Layouts

- Off-Axis Paraboloid (top left)
- Direct Transmissive (top right)
- **Dog-Leg Transmissive** (bottom right)
 - Extra fold mirror for compact baseplate
- Zoom Transmissive (bottom left)
 - Negative lens allows camera adjacent to baseplate

Notes on Candidate Layouts

- All layouts use a common baseplate for the dichroic, focusing optic, and fold mirror(s)
 - Mitigates local tilts or deformations of Nasmyth table due to temperature changes
 - Camera not mounted on baseplate to isolate optics from heat and vibration
- AO, ADC envelopes respected
- AAS components have been moved as permitted by the Technical Requirements
- We have allowed space for the dichroic mount to be replaced in Phase II with a customer-supplied mount that switches between two dichroics (space envelope from MRO)
 14th September 2010 FTT/NAS & FLC Conceptual Design Review

Preferred Layout

- OAP, DT have long baseplates which are insufficiently stiff
 - First resonance ~40 Hz
- Transmissive layouts have 20 × looser tolerance on angular stability of focusing optic
- No success yet in designing lenses for Zoom layout that work over required bandpasses and temperatures
- Hence preferred layout is DLT
 - Most compact feasible layout
 - Less or equally sensitive to misalignment compared with other layouts
- Will continue to investigate lens design for Zoom layout

FTT/NAS Optical Layouts

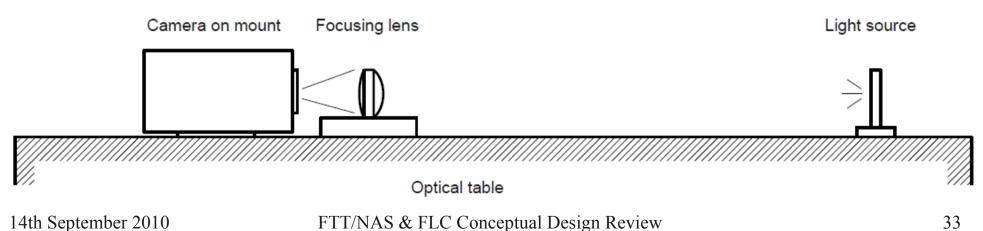
Questions?

14th September 2010

Camera Selection: FTT/NAS & FLC

Candidate Cameras

- Selection criteria:
 - Back-illuminated EMCCD sensor
 - Format at least 500 × 500 pixels
 - Likelihood of low readout latency
 - Water-cooling option
 - Vendor presence in UK and US
- Candidate cameras evaluated in lab:
 - Andor iXon^{EM}+ 897
 - Princeton Instruments ProEM 512B
- Reserve, evaluated from documentation and vendor queries:
 - Hamamatsu ImagEM C9100-13
- All three cameras use the same e2v EMCCD chip


Camera Evaluation Criteria

- Price
- Hardware considerations:
 - Packaging, cabling requirements, mounting arrangement
- CCD clocking
 - Clocking speed, readout noise
- Power, environment, cooling
 - Power dissipation, temperature and humidity ranges, cooling arrangements
- Latency and programming considerations
 - Readout latency, Linux support, source code availability

14th September 2010

Camera Laboratory Tests

- Measured readout latency
- (Measured noise performance)
- Measured power dissipation
 - Voltage and current
 - Temperature rise of fan-forced air
- Measured mechanical stability of CCD chip

Camera Evaluation Conclusions

- Andor iXon^{EM}+ 897
 - Latency in spec.
 - Power dissipation in spec.
 - Linux support, real-time driver proof-of-concept
 - Need to pay for development of custom subframe readout (max. 23×23 pix. for all cameras)
- Princeton Instruments ProEM 512B
 - Latency 1000–1300 μs (requirement 1130 μs)
 - Head power dissipation 30 W (requirement 20 W)
 - Linux support "soon"
- Hamamatsu ImagEM C9100-13
 - Latency untested
 - Linux support, real-time driver should be straightforward
 - Survival temperature -10 °C (warranty implications only)

Camera Selection

Questions?

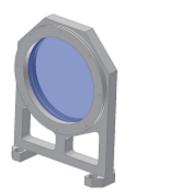
14th September 2010

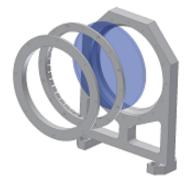
FTT/NAS Conceptual Opto-Mechanical Design

Opto-Mechanical Concept

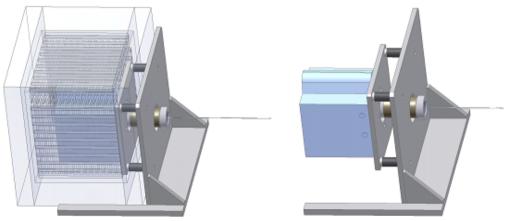
- Common baseplate for dichroic mount, focusing optic and fold mirror(s)
 - Kinematic three-point support
- No adjusters (avoids many stability problems)
 - Seasonal focus adjustment may be required, compensation by lens design is possible
- Mounts and baseplate made from aluminium
 - Invar also suitable, but is much more expensive

Dichroic Mount


- Two alternative clamping methods:
 - Left panel: 2 point/line contacts support lower edge, spring load from top
 - Right panel: 3 point/small area contacts on one face
 - Contacting areas in central plane of mount
- Retaining shoulder/tabs to prevent excessive motion in earthquake

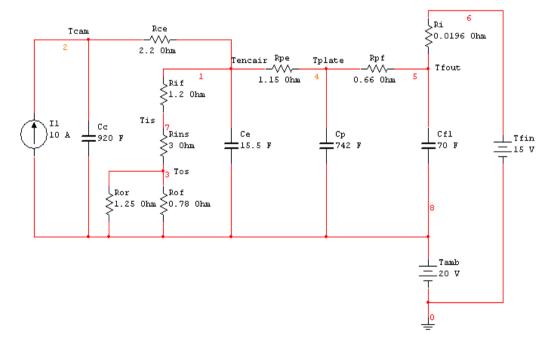


Lens Mount


- Lens held circumferentially at edge by compliant Al fingers projecting from Al centering ring
- Retaining ring pre-loaded against lens by compression springs
- Contacting surfaces precision machined

Camera Mount

- Camera mount outside thermal enclosure so it experiences ambient conditions
- Connection to camera via carbon fibre tubes
 - Stiff connection with thermal isolation
- Provision to avoid over-constraint at interface with table


FTT/NAS Conceptual Opto-Mechanical Design

Questions?

Conceptual Thermal Design: FTT/NAS & FLC

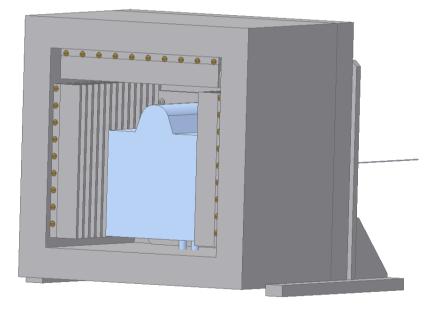
Thermal Modelling

- Simple lumped parameter model
 - Andor camera parameters
 - Heat transfer coefficients calculated at operating temps
 - Radiation included
 - Matlab model next
 - Thermal testing
 - Refined Model

Baseline Thermal Design

- Use electronics housing cooling loop ("Loop 1")
 - Flow valve to camera controlled by FTT/NAS computer
- Camera enclosure:
 - Temperature and dew point sensors inside
 - Temperature sensors on external surface
 - Heating element
 - Dry air feed (< 1 litre/min)
- UTE temperature and dew point from ISS

Baseline Thermal Control System

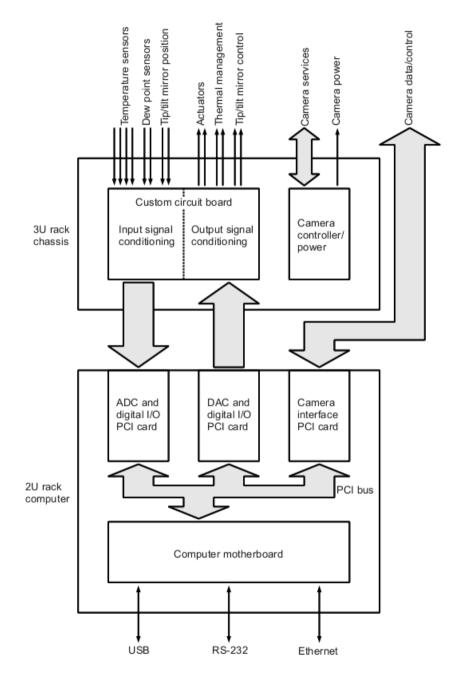


Alternative Thermal Design

- Dedicated cooling loop for camera enclosure
 - Exchanges heat to UT motor/enclosure cooling loop ("Loop 2")
- Interface to Loop 2 in insulated housing mounted to UTE structure under Nasmyth table, containing:
 - Peltier liquid-liquid heat exchanger
 - Circulating pump
 - Expansion tank
 - Flow control
- Camera enclosure as baseline design
- UTE temperature and dew point from ISS

Camera Enclosure

- External dimensions 340 × 340 × 300 mm
- 40 mm Aerogel insulation in aluminium casing
- Heat sinks bonded to cold plates
- Camera cooling in series with cold plates
- Thermally managed


Conceptual Thermal Design

Questions?

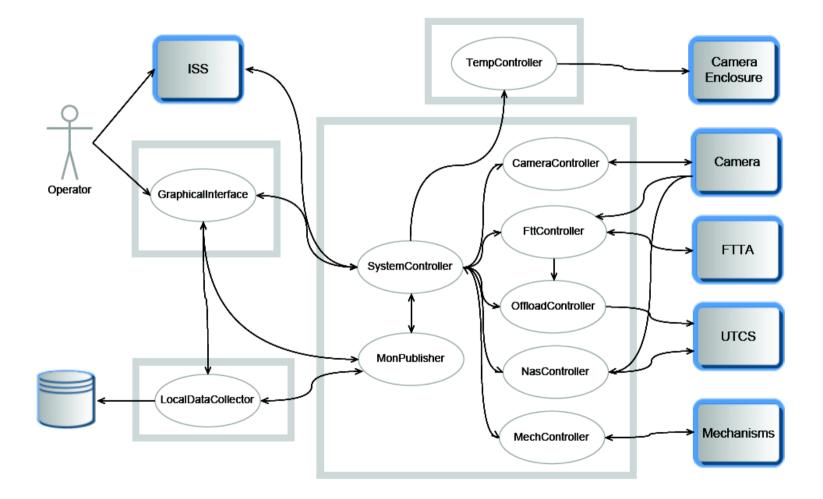
Conceptual Electronics Design

Electronics Requirements

- Allocated 5U of rack space in electronics housing Q5
- Control computer (2U)
- Interfaces (3U):
 - Interface to EMCCD camera (PCI or Ethernet)
 - Interface to FTTA
 - Control and monitoring of tip-tilt mirror position
 - Thermal control:
 - Read temperature and dew point sensors
 - Coolant flow control

14th September 2010

FTT/NAS & FLC Conceptual Design Review


Conceptual Electronics Design

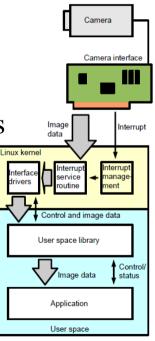
Questions?

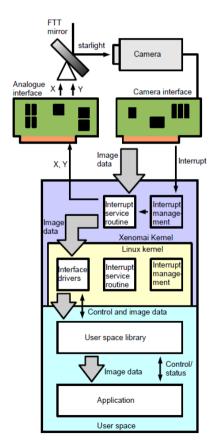
FTT/NAS Conceptual Software Design

14th September 2010

FTT/NAS Software: Tasks and Processes

Software Processes


- Definition of processes follows from host, lifetime and programming language considerations:
 - GraphicalInterface may be run on laptop or control room computer for fastest video (C or Java)
 - TempController must be running at all times (C)
 - LocalDataCollector may be local copy of ISS Data Collector (Java)
 - Master process: all remaining tasks (C)


Software Tasks and ISS Interface

- Master process comprises multiple concurrent tasks
- Possible implementation is threads:
 - SystemController and MonPublisher use C with-threads ISS API
 - Need to see more details of ISS API to decide whether "actor model" with message-passing (e.g. using ZeroMQ) between threads is best way of achieving thread-safety
- Alternative implementation is event-driven:
 - Single thread switches between tasks based on "events" such as periodic timers and availability of data – as in DL software
 - SystemController and MonPublisher use C no-threads API

RT Camera Driver

- \bullet Closed-loop b/w requirement imposes hard deadline of 100 μs from receipt of camera data to output of FTTA control voltage
- Hence need a real-time operating system and camera driver
- Porting of vendor-supplied driver from vanilla Linux to Xenomai straightforward given access to source code for interrupt service routine
 - Have demonstrated this for the Andor camera

FTT/NAS Conceptual Software Design

Questions?

Lifetime and Maintenance: FTT/NAS (& FLC)

Lifetime and Maintenance

- No moving parts on optical table
- Cooling fluid flow control valve will be selected to suit 10year lifetime requirement
- Optics will be suitably overcoated
 - But may need recoating after several years
- Electronics modularised, selected with lifetime in mind
 - Risk that replacement parts won't be available
- No issues with EMCCD camera
 - Gain ageing not an issue for the expected pixel rate and gain settings

Lifetime and Maintenance

Questions?

Interfaces: FTT/NAS & FLC

Proposed ICDs

ICD reference number	Owner	Description
MRO-ICD-CAM-1100-0108 FTT/NAS-FTTA MRO-ICD-AMO-6000-025 FTTA-FTT	CAM AMOS	Specific FTTA-FTT interface General UT electrical ICD
MRO-ICD-CAM-1000-0109 FTT/NAS,FLC-UTE MRO-ICD-EIE-0032 UTE-FTT	CAM EIE	FTT/NAS & FLC to Enclosure ICD Enclosure to FTT system ICD
MRO-ICD-CAM-1000-0110 FTT/NAS,FLC-NOT	CAM	FTT/NAS & FLC to optical table ICD
MRO-ICD-CAM-1000-0111 FTT/NAS,FLC-UT	CAM	FTT/NAS & FLC to UT optical ICD
MRO-ICD-CAM-1100-0112 FTT/NAS-ISS	CAM	FTT/NAS to ISS ICD
MRO-ICD-CAM-1200-0113 FLC-ISS	CAM	FLC to ISS ICD

Interface Issues

- Stability of the Nasmyth optical table. This has potential system-wide impact;
- **Cooling**: we request that cooling loop 1 (EIE electronics housing) rather than loop 2 be routed to Nasmyth optical table [TBC];
- **Dry air**: we request that air be supplied to the Nasmyth optical table and understand that we should include suitable drying equipment as part of our system;
- Cable route from the FTT/NAS sensor on the optical table to controller in electronics housing: The camera cable is 6 m maximum and the latest calculation of the route it must take is approximately 5.3 m. This should be sufficient margin;
- FTT/NAS space envelope: we request that parts of AAS be separated to allow a common base-plate to be used for FTT/NAS components;
- **Power consumption**: we request an increase in FTT/NAS power consumption allowance and a potential increase in power dissipation if an alternative candidate camera must be chosen.

Interfaces

Questions?

FTT/NAS: Summary and path forward

FTT/NAS Summary (i)

- Optical layout:
 - Preferred DLT layout satisfies all constraints
 - Will continue to investigate lens design for Zoom layout
- Camera selection:
 - Andor iXon^{EM}+ 897 is lowest-risk choice
 - Plan to pay for development of custom subframe readout ASAP
- Opto-mechanical design:
 - Expect to meet specification using common baseplate and nonadjustable Al mounts, within factor 2 uncertainty
 - High risk that stability will be compromised by tilt and deformation of Nasmyth optical table

14th September 2010FTT/NAS & FLC Conceptual Design Review

FTT/NAS Summary (ii)

- Thermal design:
 - Baseline design using Loop 1 directly will meet all requirements for Andor camera
 - Extra design and implementation effort would be required to accommodate an alternative camera
- Electronics design:
 - Straightforward to implement using available rack space
- Software design:
 - No critical issues foreseen unless Princeton ProEM camera is used
 - Multi-tasking implementation and inter-task communication scheme will be decided in PDR phase once full details of ISS API are known

FTT/NAS Risk Areas (i)

• Camera selection:

- Risk of schedule delays if Andor iXon^{EM}+897 cannot be used
- Opto-mechanical stability:
 - We are confident of meeting specification to within factor 2 uncertainty in modelling
 - Plan to test prototype dichroic mount early in PDR phase
 - Fallback is use of Invar (implies cost increase)
- Nasmyth optical table stability:
 - Recommend that MROI Project Office assess this system-level risk ASAP

FTT/NAS Risk Areas (ii)

• Impact of speckle noise:

- Impact on centroid accuracy not yet fully assessed
- We are developing a numerical simulation to verify our initial estimates
- Limiting sensitvity:
 - Derived requirement calculations suggest limiting sensitivity $m_V = 16$ under the assumptions defined in the Technical Requirements Document is impossible
 - We believe a more realistic sensitivity limit is $m_v = 15.8$
 - The system will work at $m_V = 16$ but with tip-tilt residuals 2% over-budget, leading to an additional 0.5% visibility loss in the H band

• Dynamic range:

- Current design can accommodate targets as bright as magnitude 3
- If capability to observe brighter targets is desired, additional hardware to attenuate the starlight will need to be designed and installed

14th September 2010FTT/NAS & FLC Conceptual Design Review

FTT/NAS: Summary and path forward

Questions?

FLC Derived Requirements

FLC Derived Requirements: Thermal Management (i)

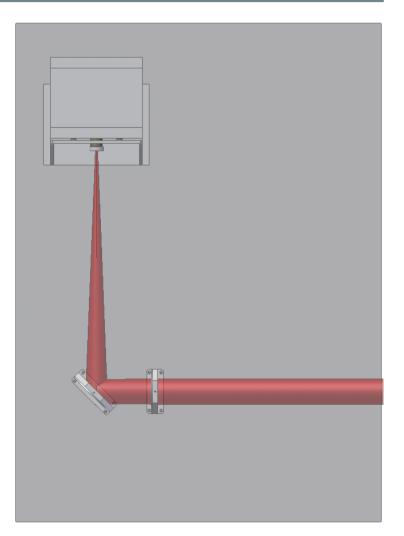
- Assumptions:
 - EMCCD camera in environmentally-controlled enclosure:
 - Camera enclosure temperature is controlled to protect camera and reduce heat dissipation (no requirement for exterior surface to be within 2 °C of ambient)
 - Camera environment controlled at all times, so always ready to be switched on
 - Heat removed from camera head and enclosure by fluid and exchanged into one of telescope coolant loops

FLC Derived Requirements: Thermal Management (ii)

- Derived requirements from thermal modelling:
 - Max. enclosure internal air temperature: 30 °C
 - Min. enclosure internal air temperature: 0 °C
 - Enclosure air dew point: coldest internal component -5 °C
 - Emissivity of enclosure outer surface > 0.7
 - Residual camera heat 20 W [TBC]
 - Camera enclosure space envelope: $340 \text{ mm} \times 300 \text{ mm} \times 350 \text{ mm} \text{ max}$.
 - CPU and interface electronics power dissipation allowance 180 W
 - Camera interface and controller power dissipation allowance 70 W
 - Power consumption 350 W

FLC Derived Requirements: Dynamic Range

- Assumptions:
 - EMCCD read noise 50 electrons RMS
 - Exposure time independent of frame rate; minimum exposure 1 ms; maximum exposure 1 s
 - Cousins R-band filter 570–730 nm
- Derived requirements:
 - With unity EMCCD gain, magnitude range is 2.5 to 16.2 in ~0.6" seeing (1.0 to 14.8 in ~1.2" seeing)
 - Hence could use permanent 1–2 magnitude attenuation

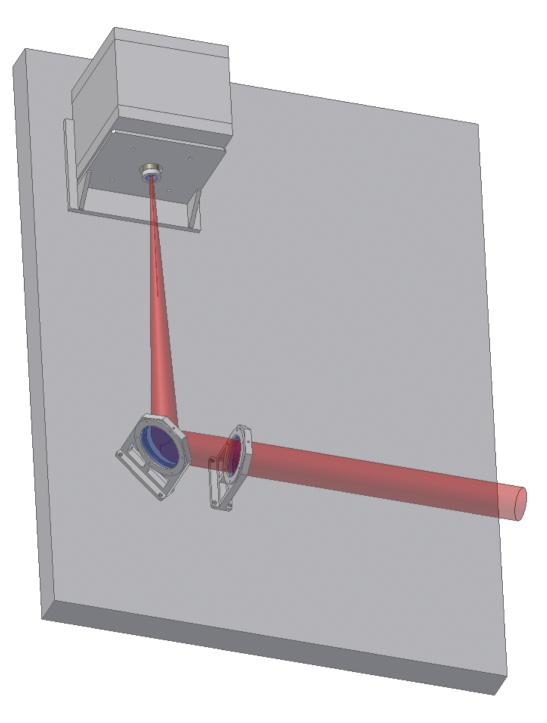

FLC Derived Requirements

Questions?

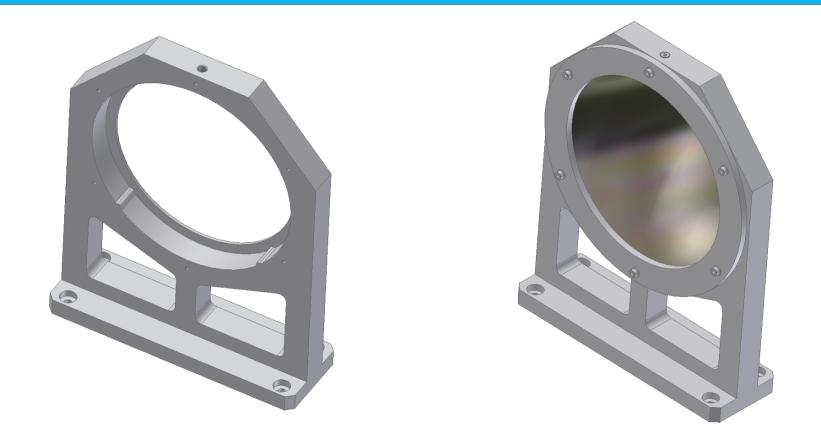
FLC Optical Layouts

FLC Layout

- COTS doublet lens $\rightarrow 0.18''/\text{pix}$
- FTT/NAS camera mount
- Width of table \Rightarrow fold mirror
- Yet to optimize relative distances between components
- Could move left or right to accommodate other equipment



FLC Optical Layouts

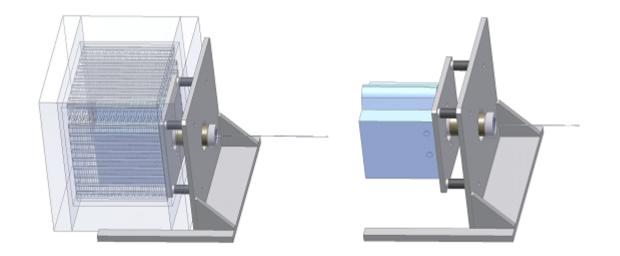

Questions?

14th September 2010

FLC Conceptual Opto-Mechanical Design

Lens/Fold Mirror Mount

Lens Mount

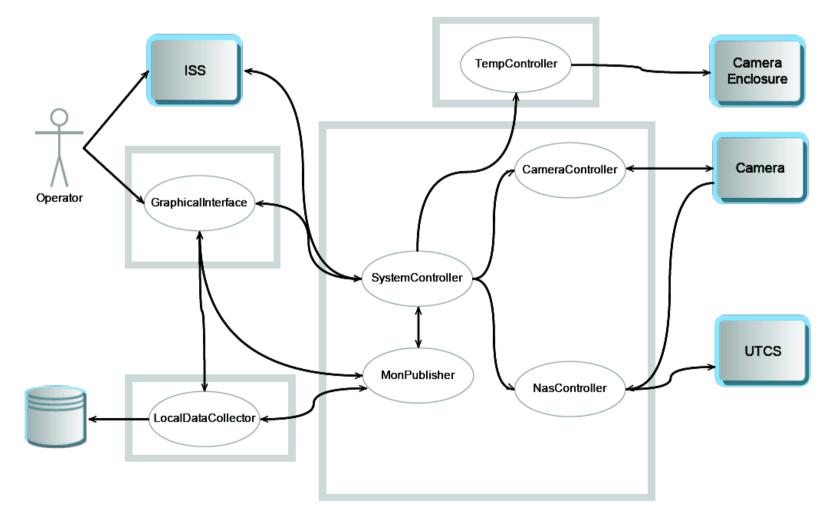

- Designed so lens centred to 0.2 mm and stable to 50 μm
- Lens held against reference face by compliant ring, backed by retaining ring screwed into mount
- Contacting surface machined tangent to lens surface
- Lens held radially using 2 compliant locating surfaces and a compliant pre-load screw
- Mount will be bolted directly to table; no adjustments needed

Fold Mirror Mount

- Mirror held against axial reference face by compliant ring, backed by retaining ring screwed into mount
- Mirror held radially using 2 reference surfaces and a compliant pre-load surface
- Mount will be bolted directly to table; no adjustments needed

Camera Mount

• Same design as FTT/NAS


FLC Conceptual Opto-Mechanical Design

Questions?

14th September 2010

FLC Conceptual Software Design

FLC Software: Tasks and Processes

FLC Software

- Standalone and integrated roles
 - Standalone role may use ISS code but will not require a running ISS
- Will be as far as possible strict subset of FTT/NAS software
 - Except for UTM vendor-requested functionality, which is mostly in GUI
 - Implies dependence on Xenomai real-time Linux

FLC Conceptual Software Design

Questions?

14th September 2010

FLC: Summary and path forward

FLC Summary (i)

- Optical layout:
 - Straightforward
 - To be optimised very soon
- Camera selection depends on FTT/NAS camera choice:
 - Andor iXon^{EM}+ 897 is lowest-risk choice for FTT/NAS
 - Plan to pay for development of FTT custom subframe readout ASAP
- Opto-mechanical design:
 - Not challenging
 - Potential impact of Nasmyth table instability will optimise layout to mitigate

FLC Summary (ii)

- Thermal design:
 - Baseline design using Loop 1 directly will meet all requirements for Andor camera
 - Extra design and implementation effort would be required to accommodate an alternative camera
- Electronics design:
 - Straightforward to implement using available rack space
- Software design:
 - No critical issues forseen unless Princeton ProEM camera is used
 - Multi-tasking implementation and inter-task communication scheme will be decided in PDR phase once full details of ISS API are known

FLC: Summary and path forward

Questions?

14th September 2010