

Magdalena Ridge Observatory - New Mexico Tech - 101 East Road - Socorro - NM 87801 - USA

MRO-Interferometry

Unit Telescope Fast Tip-Tilt System

Design Review

INT-403-CON-0130 rev. 1.0

August 9, 2010

INT-403-CON-0130 1 out of 11

Revisions

REV	DATE	AUTHOR	COMMENTS
0.1	July 21, 2010	EJB	Document created
0.4	July 27, 2010	ЕЈВ	Numerous small updates
0.5	Aug 3, 2010	EJB	Merged document INT-403-CON-131 into this document. Incorporated input from various sources.
0.6	Aug 8, 2010	EJB	Incorporated input from JY, and updated date for SOW reference document.
1.0	Aug. 9, 2010	EJB	Updated reference document version, and prepared for release.

Table of contents

1.	Int	roduction	4
2.	Re	ference Documents	5
3.	MI	RO Interferometry Project	5
		nceptual Design Review	
		Key Questions	
		MRO-Identified Key Requirements	
		CoDR Deliverables	
	4.4.	Document Delivery & Questions	8
		Agenda of Review	
5.		view Teams	
	5.1.	Review Team Activities	10
	5.2.	External Review Team	10
	5.3.	Internal Review Team	11

Executive Summary

The New Mexico Tech (NMT) administration is seeking an independent and expert assessment on the Magdalena Ridge Observatory (MRO) Interferometer Unit Telescope Fast Tip-Tilt System (FTT) Design.

The top-level questions that a review team should consider are:

- 1. Is the proposed design compliant with the requirements?
- 2. What are the major performance risk factors for the proposed design and are the strategies for mitigating them adequately defined?
- 3. Are the risks associated with the schedule reasonable?

INT-403-CON-0130 3 out of 11

1. Introduction

The only major telescope subsystem that is still in the early design phase is the fast tip-tilt system. This latest contract has been awarded to the MRO consortium partner, the University of Cambridge (UK). The contract for phase 1a was signed on July 27, 2010. The contractual schedule for delivery is listed in Table 1, and the full requirements are available in the associated reference document.

Identifier	Milestone	Due date	Due date				
	SOW page 15	SOW page 11	Email 7/14/2010	planned			
	Phase 1a: Design FTT/NAS & FLC	,					
	Kick-off phase 1a	15-Apr-10					
00	Conceptual Design						
00.1	Derived Requirements						
00.2	Camera Evaluation						
00.3	Conceptual Design						
00.4	Conceptual Design Report & Review	19-Aug-10		9-Sep-10			
01	Preliminary Design FTT/NAS & FL	.C					
01.1	Optical Design						
01.2	Mechanical Design & Production						
01.3	Electronic Design & Production						
01.4	Test Design and Development						
01.5	Software Design and Development						
01.6	Preliminary Testing						
01.7	Systems Engineering						
01.8	Interim Preliminary Design Report	29-Mar-11					
	End of Phase 1a contract	31-Mar-11					
	Phase 1b: Design, Assembly, and AIV						
	Kick-off phase 1b	1-Apr-11					
02	Test and Review						
02.1	Integrated Testing						
02.2	PDR Test Report & Review	30-May-11					
03	First Light Camera Delivery						
03.1	First Light Camera Testing						
03.2	First Light Camera Install and Test	30-Jun-11					
	End of phase 1 bcontract	30-Jun-11	30-Sep-11				
	Phase 2: upgrade of FLC to FTT						
	Kick-off phase 2		7-Jun-11				
	FTT/NAS #1 FATs complete		13-Dec-11				
	FTT/NAS #1 SATs complete		24-Jan-12				
	Handover of FTT/NAS #1		30-Jan-12				
	End of Phase 2 contract		27-Mar-12				

Table 1: Delivery schedule for the first light camera and the fast tip-tilt system for the telescope #1.

INT-403-CON-0130 4 out of 11

As part of the design review process, the NMT administration is seeking an expert recommendation on the material provided for the reviews.

2. Reference Documents

- [1] INT-403-CON-0128
 - Statement of Work: Fast Tip Tilt/NA System Development Phase 1a and Option for Phase 1b
 - June 16th 2010
- [2] INT-403-ENG-0003
 - Technical Requirements: Fast Tip-Tilt/Narrow-field Acquisition System rev 2.2 May 20th 2010
- [3] INT-403-TSP-0107
 - Technical Requirements: First Light Camera rev 1.0 May 20^{th} 2010
- [4] INT-403-ENG-0115
 - FTT/NAS vs FLC: Comparison of Technical Requirements rev 1.1 May 20^{th} 2010

3. MRO Interferometry Project

The Magdalena Ridge Observatory (MRO) is a new astronomical facility being built at 10,400 ft in the mountains west of Socorro, overlooking the Very Large Array (VLA). The Observatory will consist of two instruments: a 2.4-meter fast-tracking telescope and a 10-element state-of-the-art optical/infrared imaging interferometer (MROI).

The MROI is planned to be initially deployed with a complement of six relocatable 1.4 meter telescopes that will be combined together interferometrically to produce images in the near infrared J, H, and K bands. Following phases will add additional telescopes up to a total of ten for the full array, and will extend the interferometric capability to the visible R and I bands. The interferometer baselines of up to 340 meter will result in images with spatial resolutions about 200 times those produced by the Hubble Space Telescope. The science mission of MROI centers round three key areas:

- 1. Characterization of star forming regions and the earliest phases of planetary formation:
- Detailed studies of stellar astrophysics in complex environments such as those seen in pulsating stars, interacting binary stars, and stars undergoing convection and massloss:
- 3. Imaging of the environments of black holes in the hearts of Active Galactic Nuclei.

The MROI will be a unique astronomical facility and will present many opportunities for students and researchers in the US and from all over the world. The current development status (August 2010) of the "unit telescope system" is shown in Table 2.

INT-403-CON-0130 5 out of 11

MROI development status Aug/3/2010							
MROI_development_status_i05.xlsx				Initial	operationa	al status]
		Unit teleso	copes				
	Design	#1	#2	#3	#4	#5	#6
Telescope foundation	✓			-)		
Telescope enclosure	✓		×		×	×	×
Telescope optics	✓	\rightarrow	\rightarrow	\rightarrow	×	×	×
Telescope mount	✓	\rightarrow		>	×	×	×
Telescope fast tip-tilt system	\rightarrow	\rightarrow	×	×	×	×	×
Wide field acquisition system	✓	\rightarrow	×	×	×	×	×
Interferometric supervisory system				→			
Environmental and safety monitoring system				→			
Delay lines	✓	\rightarrow	×	*	×	×	×
		•	•	•	×	×	×
Fringe tracker	\rightarrow		•	-	>	•	
Science beam combiner	→				K		

✓ : completed→ : in progress

Table 2: Overview of the current status of procurements (design and development) of the unit telescope systems.

The MRO interferometry project is going through an exciting phase. It is transitioning from the design to the assembling and commissioning phase. First light for the first three telescopes are planned for:

first light telescope #1 December 2011 first light telescope #2 June 2012 first light telescope #3 December 2012

The fast tip-tilt system is the last remaining critical subsystem of the telescope that has not completed the design phase. This document addresses the review process of that subsystem. This current version of this document is limited to the Conceptual Design Review. Future versions of this document will include a scope description for the preliminary and final design reviews.

INT-403-CON-0130 6 out of 11

4. Conceptual Design Review

4.1. Key Questions

The three key questions that we ask the review team to address are:

- 1. Is the proposed design compliant with the requirements?
- 2. What are the major performance risk factors for the proposed design and are the strategies for mitigating them adequately defined?
- 3. Are the risks associated with the schedule reasonable?

4.2. MRO-Identified Key Requirements

MRO has identified the following key areas that should be addressed in the review:

Description	Req.
Maintaining the opto-mechanical stability of the overall FTT/NA System	#66
at the level required	
Handling the time varying offsets without interrupting the FTT loop	#21
Adequately communicating with the MROI-provided systems including	#35
sending telemetry and receiving updates to the pointing model while	
keeping the FTT loop closed	
Meeting the limiting sensitivity requirement	#64
Meeting the residual tip-tilt error requirement	#65
Managing bright source targets	
Supporting user-selectable closed-loop 3dB bandwidths	
Supporting the dither function	
Meeting the schedule linked to the delivery of UT#1	

Table 3: Key requirements on the FTT system.

4.3. CoDR Deliverables

Title Document	Document Identifier
CoDR Data Package List	MRO-LIS-CAM-0000-0100
Derived Requirements Document	MRO-TRE-CAM-0000-0101
FTT/NAS Conceptual Design Document	MRO-TRE-CAM-0000-0102
FLC Conceptual Design Document	MRO-TRE-CAM-0000-0103
FTT/NAS Requirements Verification Matrix	MRO-TRE-CAM-0000-0104
FLC Requirements Verification Matrix	MRO-TRE-CAM-0000-0105
FTT/NAS & FLC Development Plan	MRO-PLA-CAM-0000-0106
ICD List and Expected Content	MRO-LIS-CAM-0000-0107

Table 4: Expected documents to be provided at CoDR to the review teams.

INT-403-CON-0130 7 out of 11

The conceptual design document will address the following issues at the minimum:

- 1. Presentation of top-level design of deliverables;
- 2. Summary of key requirements and operating scenarios;
- 3. General system approach and description (including alternatives);
- 4. Block breakdown of hardware and software elements and functions, etc.;
- 5. Back of envelope calculations to get basic predictions of performance for each subsystem;
- 6. Back of envelope calculations to see if the key requirements are met.

4.4. Document Delivery & Questions

Days before CoDR	Tasks completed
14	CoDR documents should be delivered two weeks prior to the review
3	Reviewers to send questions on CoDR documentation to Cambridge
0	Cambridge to answer to these questions

Table 5: Schedule towards CoDR.

INT-403-CON-0130 8 out of 11

4.5. Agenda of Review

The date has been set to Thursday, September 9, 2010, by teleconference.

Time	Topic	Moderator
		Speaker
8:30am MST	Introduction, who is who	EB
8:45am MST	FTT/NAS conceptual design - overview of each	MF/JY
	principal section of the design report, followed by	
	questions on that section	
10:20am MST	FLC conceptual design - overview of each principal section of the design report, followed by questions on that section. NB only sections where there are significant differences to the FTT/NAS design will be presented.	MF/JY
10:45am MST	Closing discussion	EB

Table 6: Tentative agenda for the FTT CoDR.

The principal sections mentioned in the agenda (Table 6) for the FTT and FLC CoDR are listed in Table 7.

Principal section	FTT	FLC
Derived Requirements	yes	yes
System Design	yes	\nearrow
Optical Layouts	yes	yes
Camera Selection	yes	><
Conceptual Opto-Mechanical Design	yes	yes
Conceptual Thermal Design	Yes	\nearrow
Conceptual Electronics Design	Yes	\searrow
Conceptual Software Design	yes	yes
Interfaces	yes	yes
Summary and path forward	yes	yes

Table 7: Principal sections to be presented for the FTT and FLC CoDR.

INT-403-CON-0130 9 out of 11

5. Review Teams

5.1. Review Team Activities

The activities of the review teams are:

- 1. Read the review material in advance;
- 2. Send a list of questions to be addressed in advance of the review;
- 3. Attend the review (in person or by teleconference), analyze the answers to the questions provided, ask any additional questions that have arisen, participate in any discussion;
- 4. Participate in a closed-session for reviewers to share their opinions and ideally reach a consensus on the performance review;
- 5. Prepare a short written report that answers the top-level questions. If reviewers wish to provide additional feedback outside the scope of these top-level questions, it is welcome but we ask that it be included in a separate section of the report.

5.2. External Review Team

Members of the external review team are listed in Table 8.

Name	Organization
Contact information	Position
TBD #1	
TBD #2	
TBD #3	

Table 8: External review team members.

The review team will identify a chair amongst themselves. The role of the chair is

- To chair the external review;
- To compile the final report;
- To be the spokesperson of the external review team.

INT-403-CON-0130 10 out of 11

5.3. Internal Review Team

To manage and oversee the MRO Fast Tip Tilt System procurement an MRO internal team has been established (Table 9).

Name	Position
Contact information	
Andres Olivares	Mechanical Engineer
aolivares@mro.nmt.edu	
(575) 835 – 6758	
Colby Jorgenson	Instrument Scientist
cjurgenson@mro.nmt.edu	
(575) 835 - 6800	
Allen Farris	Lead Software Engineer
afarris@nmt.edu	
(575) 835 - 6645	
Eric Bakker	Manager Telescope System and
ebakker@mro.nmt.edu	Commissioning
(575) 518- 8854	

Table 9: MRO interferometry FTT team.

- end of document -

INT-403-CON-0130 11 out of 11