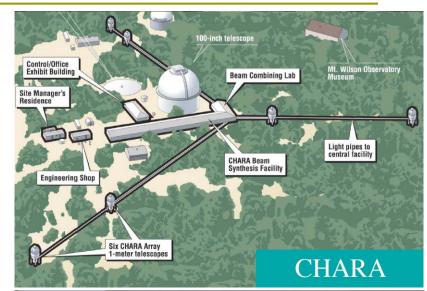
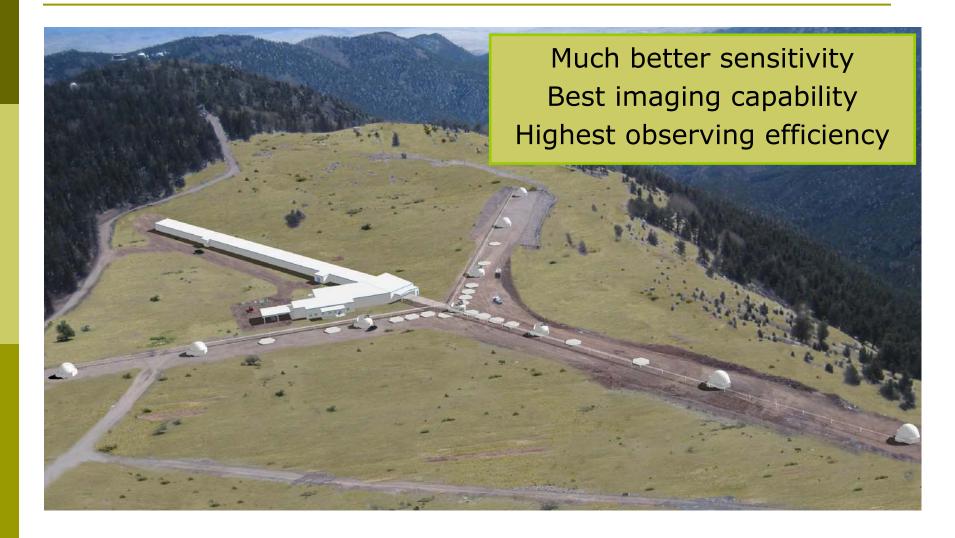
The MROI Fast Tip-Tilt/ Narrow-field Acquisition System (FTT/NAS) project

The MROI team
Cavendish Laboratory

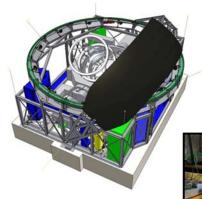

Goals of today's presentation

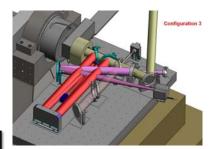
- Background and context
 - What's it all about
- What:
 - The FTT/NAS system
- □ How:
 - Organization
- What now:
 - Near term goals and tasks
- Questions

There are a number of optical/infrared arrays

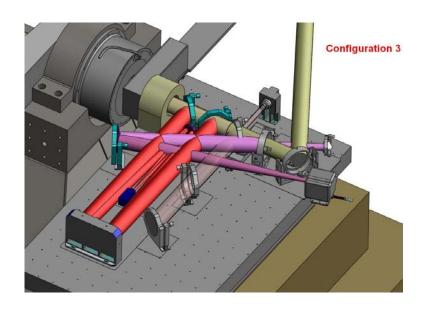


28 April 2010


FTT kick-off meeti


Our vision is to build the world's best

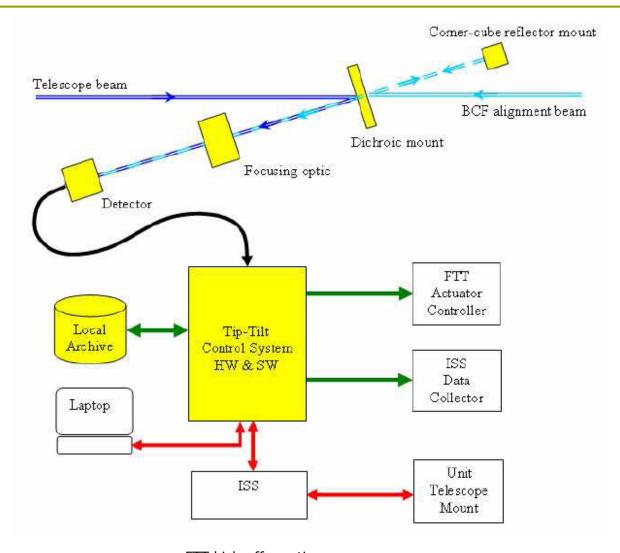
Where are we today?


Where are we today?

- Original intent: deliver a 6-element array by 2009
 - Compromised by funding and management issues
- Current plan: deliver a 3-element array by 2012
 - Install infrastructure for ≥ 6 telescopes
 - No technical compromises, just fewer telescopes
 - Use results from this to secure funds for expansion post 2012
 - Majority of funds from NMT possibility of some STFC support

The FTT/NAS system

- Ensures that the light beam collected by a telescope is sent down the beam relay pipes "in the right direction"
 - The FTT/NA system monitors the light
 - The active secondary mirror redirects it



The FTT/NAS contract

- Only concerns the first FTT/NA system, which will be delivered in two phases
- Phase 1: Conceptual design, part of preliminary design & delivery of a "First Light Camera" (FLC) for UT commissioning and integration
 - April 2010 March 2011 \$490k
 - March 2011 June 2011 \$120k
- Phase 2: Re-work of design & delivery of production unit
 - June 2011 March 2012 \$350k
- Currently NMT only has funds to pay for Phase 1
 - Expect funds for Phase 2 to be available in 2011

Rest of the talk will deal with the Phase 1 contract only

FTT/NAS system components

Key challenges (i)

- Two primary functions:
 - Target acquisition (NAS & FLC)
 - Fast tip-tilt correction (FTT)
- Must work on 16th magnitude stars (in good seeing) and accommodate changes in seeing
- Must stay precisely aligned ($\sim 1\mu m$) for $\Delta T = 5^{\circ}C$
- Goal to operate down to ambient temperature of -10 °C, and up to relative humidity of 90%

Key challenges (ii)

- Space and power dissipation constraints
- Complex software
 - Data streaming to MRO Interferometer Supervisory System (ISS)
 - Apply ISS-supplied dispersion & off-axis offsets to objective point

People and roles

- John Young
 - Project leader, software, point-of-contact with NMT
- Martin Fisher
 - Deputy project leader, systems engineering, point-of-contact with NMT
- David Sun
 - Mechanical engineering
- Bodie Seneta
 - Software (real-time), electronics
- David Buscher
 - Controls, software design
- Alex Rea
 - Software, optical analysis, PhD!
- Peter Doherty
 - Mechanical fabrication
- John Ely
 - Electronics layout and fabrication
- Chris Haniff
 - Optical analysis, system design, contracts
- Donald Wilson
 - Design scrutiny, testing plans

Schedule

ACTIVITY (April 2010 to March 2011)	APRIL	MAY	JUNE	JULY	AUGUST	SEPT	OCT	NOV	DEC	JAN	FEB	MAR
Conceptual Design												
Derived Requirements												
Camera Evaluation												
Conceptual Design												
Conceptual Design Report & Review												
Preliminary Design												
Optical Design												
Preliminary Mechanical Design												
Electronic Design												
Test Design and Development												
Software Design and Development												
Preliminary Testing											î	1
Systems Engineering												
Preliminary Design Report												

ACTIVITY (April 2011 to June 2011)	APRIL	MAY	JUNE		
Optional Extension					
Integrated Testing					
First Light Camera Testing					
First Light Camera Install					
Preliminary Design Report & Review					

ACTIVITY (July 2011 to March 2012)		JULY	AUGUST	SEPT	OCT	NOV	DEC	JAN	FEB	MAR
Final Design Phase										
Final Design & Production										
Software Development & Testing										
Manufacturing & Procurement										
Integrated Testing						Ī				
Factory Acceptance										
Delivery, Installation & Site Acceptance										

Meeting structure (i)

We envision two types of meeting:

- Schedule tracking meetings
 - Fortnightly, all attend
 - Track progress against schedule
 - Collate material for monthly reports to NMT
 - Schedule next technical meetings
 - Set near-term goals and resources to deploy
- Technical meetings
 - Frequency: as needed, relevant people attend
 - Focused discussion of design issues
 - Supported by discussion material (slides/memo) prepared in advance
 - Once design decision made, combine discussion material and meeting minutes into design note soon after meeting

Meeting structure (ii)

- These arrangements are deliberately different from those for the delay line activity
- Designed to help us keep to schedule
 - Funding squeeze means we cannot accommodate significant delays
 - JSY/MF will track progress both formally (via schedule tracking meetings) and informally
 - If falling behind will aim to re-assign resources or change plan of attack
- Also aim to record design decisions as we go along
 - Want to make this an integral part of our procedures

Supporting resources

- Mailing list <u>mro-ftt@mrao.cam.ac.uk</u>
 - Archived at http://oberon.ra.phy.cam.ac.uk/lurker/
 - Note <u>mro-ftt-archive@mrao.cam.ac.uk</u> goes to archive only
- Wiki at http://www.mrao.cam.ac.uk/research/OAS/pmwiki/
 - Used as document repository
 - Upload completed documents (e.g. design notes) to wiki instead of attaching to email
 - See JSY for edit password and/or assistance
- Google Calendar
 - Will show meeting dates and project milestones
 - Please add your planned absences
 - Read-only version on wiki

Near-term goals (i)

- Bodie, Alex:
 - To coincide with camera loans:

Evaluation of Andor and Princeton EMCCD cameras:

- Latency, frame rate, real-time driver proof-of-concept
- All:
 - Next 2 weeks: Derived requirements
 - Technical meetings
 - Analysis
- Alex:
 - Between camera loans:
 Start simulations to determine latency requirement

Near-term goals (ii)

All:

To start in 1 week: Conceptual Design

JSY/MF will allocate tasks

Questions

Any questions?