
swbuild.odt Page 1 of 8

Cavendish Laboratory
JJ Thomson Avenue

Cambridge CB3 0HE
UK

MRO FTT/NAS & FLC

rev 1.0

19 December 2013

John Young

Software Build System

MRO-MAN-CAM-1160-0164

MRO-MAN-CAM-1160-0164 Page 2 of 8

Change Record

Revision Date Author(s) Changes

1.0 2013-12-19 JSY Initial version

Objective
To describe the build system used for the Fast Tip-Tilt and ICoNN software written in Cambridge.

Scope
This document describes the salient features of the build system implementation, to facilitate its adoption for
new software projects, and to assist in integrating software that uses this build framework into the MROI
build system. Familiarity with GNU Make and makefile syntax is assumed.

Reference Documents
RD1 GNU Make Manual

Applicable Documents
AD1 Miller, P.A. (1998), Recursive Make Considered Harmful, AUUGN Journal of AUUG Inc., 19(1), pp.
14-25.

AD2 Version Control with Subversion, Pilato, C.M., Collins-Sussman, B, & Fitzpatrick, B.W. (2008),
O'Reilly.

Acronyms and Abbreviations
FTT Fast Tip-Tilt

FLC First Light Camera

ICD Interface Control Document

ICoNN Infrared Coherencing Nearest Neighbour fringe
tracker

ISS Interferometer Supervisory System

MROI Magdalena Ridge Observatory Interferometer

NAS Narrow-field Acquisition System

NMT New Mexico Tech

TBC To be confirmed

TBD To be determined

http://www.gnu.org/software/make/manual/
http://svnbook.red-bean.com/
http://aegis.sourceforge.net/auug97.pdf

MRO-MAN-CAM-1160-0164 Page 3 of 8

Table of Contents
1 Introduction..4

1.1 Rationale...4
1.2 Key Features...4

2 Example Makefiles...4
2.1 Top-level makefile..5
2.2 Library makefile...5
2.3 Application makefile...7

MRO-MAN-CAM-1160-0164 Page 4 of 8

1 Introduction
The FTT and ICoNN software releases supplied by Cambridge use a build system based on recursive use of
GNU Make. We expect to migrate the production delay line software to the same system in due course.

This document describes the salient features of the build system implementation, to facilitate its adoption for
new software projects, and to assist in integrating software that uses this build framework into the MROI
software build system. Familiarity with GNU Make and makefile syntax is assumed.

The build framework is part of a collection of the “camlibs” collection of software libraries, and includes
support for linking the camlibs libraries when these are incorporated into the build tree.

1.1 Rationale
We have followed the conventional approach of using Make recursively. This means expressing
dependencies at the directory level (as well as between files within directories) rather than in full. Such
incomplete dependency information can result in unreliable builds as explained in AD1. Nevertheless, we
believe that if the project is not too large, most of these issues can be avoided by thinking carefully when
deciding how to segment the software. The recursive approach has the advantage of greatly simplifying the
process of combining software from subversion repositories into a single build tree using svn:externals
properties (see Chapter 3 of AD2).

1.2 Key Features
The noteworthy features of the build system are as follows:

• Uses standard build tools: GNU Make, GCC, and pkg-config.

• Provides rules for building C and C++ code and LaTeX documentation.

• Allows one-step building of multiple software applications and their prerequisite libraries.

• The system supports a mixture of Xenomai and standard Linux executables.

• Dependencies on header files within a directory are determined automatically by GCC.

• Static libraries that are built in order to build the applications do not need to be installed, hence
several software releases containing different versions of the libraries can coexist on the same
computer.

• The system can find installed libraries using the pkg-config utility, avoiding the need to hand-edit
paths in makefiles.

2 Example Makefiles
The build system comprises three files that can be incorporated into makefiles using the include
statement. We now describe how to use these include files by means of examples. The examples are for C
code, but the framework also supports C++. We present examples of the three basic kinds of makefiles that
can be written using the build framework:

• Top-level makefile: runs make recursively in a specified set of subdirectories

• Library makefile: builds one or more static libraries

• Application makefile: builds one or more software applications which depend on libraries elsewhere
in the build tree

MRO-MAN-CAM-1160-0164 Page 5 of 8

2.1 Top-level makefile
Here we present a simplified example of a makefile that runs make recursively in several subdirectories.
There are dependencies between the subdirectories; these constrain the order in which the subdirectories can
be processed.

Top-level Makefile for mroi-ftt distribution

SUBDIRS = ext/camlibs ext/gsi/CControlSystem controlgui systems/FTTCamSystem

export CAMLIBS_DIR = $(CURDIR)/ext/camlibs
include $(CAMLIBS_DIR)/build/camlibs_recurse.mk

controlgui systems/FTTCamSystem: ext/camlibs ext/gsi/CControlSystem

End of example

In the above example there are three subdirectories to build, expressed relative to the directory containing
this makefile. Note that a subdirectory may be several levels down from the calling makefile, and that a
makefile in a subdirectory may in turn recurse into lower-level directories.

The subdirectories to recurse into are listed in the SUBDIRS variable. The next two lines include a file
camlibs_recurse.mk that contains a standard set of rules for invoking make in the directories listed in
SUBDIRS. The definition of CAMLIBS_DIR is exported for use by subdirectory makefiles. Finally the
dependencies between the subdirectories are expressed in the standard makefile fashion. The include
statement precedes the dependency rules so that the default target is the one defined in
camlibs_recurse.mk.

The file camlibs_recurse.mk defines the following (phony) targets. These are so-called “phony” targets
i.e. they are not real files. Mostly these have the conventional meanings as outlined in RD1. The non-
standard install-lib target installs libraries and their header files. The rationale for defining a separate target
for this is explained in the next section.

• all (the default target unless the including makefile defines one)

• check

• install

• install-lib

• clean

• distclean

Lower-level makefiles should define the above targets, either directly or by including camlibs_recurse.mk
or camlibs_build.mk.

2.2 Library makefile
Here is a simple example of a makefile that builds a static library and its unit test suite:

Makefile for xdgdirs library

INCFILES = xdgdirs.h
LIBRARIES = libxdgdirs.a
TEST_EXES = utest_xdgdirs

Link with the GLib library using pkg-config:
PKG_LIBRARIES = glib-2.0
CPPFLAGS =
LDLIBS =

MRO-MAN-CAM-1160-0164 Page 6 of 8

CAMLIBS_DIR = $(CURDIR)/../..
include $(CAMLIBS_DIR)/build/camlibs_build.mk

check: utest_xdgdirs
./utest_xdgdirs

libxdgdirs.a: xdgdirs.o

utest_xdgdirs: utest_xdgdirs.o xdgdirs.o

End of example

In this case the makefile builds a static library libxdgdirs.a and a unit test executable utest_xdgdirs. Such
libraries are normally only needed to build an executable elsewhere in the build tree, hence the install rule
does not install the files specified by the INCFILES or LIBRARIES variables. If necessary, the install-lib
rule can be used to install the libraries so they are available for building external software.

As in the previous example, there are three sections to the makefile:

• Variable assignments to define the targets to be built and options that control how they are built

• Include statement for a file camlibs_build.mk containing standard rules that build these targets

• Dependency rules. Note the absence of dependencies on C header files. These rules are generated
automatically using GCC

The include file defines the following same (phony) targets as camlibs_recurse.mk. The following
variables should be used at the top of the makefile to define the files built by these targets:

module Defines install path for MODULE_DATA and MODULE_DOCS. A project could
define any number of distinct values that apply to different subdirectories

EXES Executables to be made and installed (by the install rule)

TEST_EXES Executables to be made but not installed

SCRIPTS Executables to be installed (by the install rule) but do not delete under the clean
rule

LIBRARIES Libraries to be made and installed by the install-lib rule

INCFILES Include files to be (optionally made and) installed by the install-lib rule. If made,
you should add them to REMOVE_TARGETS

MODULE_DATA Module-specific data (architecture-independent), to be installed in $(prefix)/share/
$(module) by the install rule

MODULE_DOCS Module-specific documentation, to be installed in $(prefix)/share/doc/$(module)
by the install rule

REMOVE_TARGETS Extra files to be deleted by the clean rule

The following variables control compilation and linking:

MRO-MAN-CAM-1160-0164 Page 7 of 8

PKG_LIBRARIES Libraries to compile and link against. The pkg-config utility must have been
installed together with meta-information for the specified libraries. If you are
unable to use pkg-config for a particular library, use CPPFLAGS and LDLIBS
instead.

XENO_SKINS Xenomai skins to compile and link against. Xenomai, including the xeno-
config utility, must have been installed. Possible skins include 'native', 'posix'
and 'rtdm'.

CPPFLAGS Arguments for the C/C++ preprocessor, e.g. specifying extra include directories
for cpp to search

LDLIBS Library arguments for the link command

Further documentation is available in the comments at the top of camlibs_build.mk.

2.3 Application makefile
The following subdirectory makefile builds an executable which is linked against several libraries that are
built in other directories (again this is a simplified example of a real makefile).

Makefile for flcgui

Depends on camlibs libraries: fileutil, gui, msgbase, msgevent

objects = FlcEngGui.o DataHistory.o FlcSysGui.o FttEnvGui.o fitsimage.o

module = flcgui
EXES = flcgui

PKG_LIBRARIES = gtk+-2.0 gmodule-2.0 gtkimageview
CPPFLAGS = $(CPPFLAGS_msgevent) $(CPPFLAGS_msgbase) $(CPPFLAGS_gui) \
 $(CPPFLAGS_fileutil)
LDLIBS =
LDFLAGS = -export-dynamic

CFLAGS = -g -Wall -std=c99

CAMLIBS_DIR = $(CURDIR)/../../ext/camlibs
include $(CAMLIBS_DIR)/build/camlibs_libs.mk
include $(CAMLIBS_DIR)/build/camlibs_build.mk
vpath %.a $(VPATH_msgevent) $(VPATH_msgbase) $(VPATH_gui) $(VPATH_fileutil)

flcgui: flcgui.o $(objects) $(LIBS_msgevent) $(LIBS_msgbase) $(LIBS_gui) \
 $(LIBS_fileutil)

End of example

The principal difference from the library makefile is the way that the prerequisite header files and libraries
are specified. This is done by including a further file, camlibs_libs.mk. This include file defines a triplet of
variables CPPFLAGS_lib, VPATH_lib and LIBS_lib for each of a number of library “groups”. Each library
group comprises a set of header files and static libraries which might be used independently of the others.

For example the variables for the “fileutil” library group (which only contains one library) expand to:

• CPPFLAGS_fileutil is -I$(CAMLIBS_DIR)/fileutil/xdgdirs

• VPATH_fileutil is $(CAMLIBS_DIR)/fileutil/xdgdirs

MRO-MAN-CAM-1160-0164 Page 8 of 8

• LIBS_fileutil is -lxdgdirs

These sets of variables are used with GNU Make's vpath statement as follows. The libraries, as specified
by LIBS_lib , are given as explicit prequisites of the executable (here flcgui). The vpath statement is used
to tell Make where to find these libraries, making use of the VPATH_lib variables. The search paths for the
header files are set in the CPPFLAGS variable, making use of CPPFLAGS_lib variables. CPPFLAGS is used
by the build rules defined in camlibs_build.mk that compile both C and C++ code.

	1 Introduction
	1.1 Rationale
	1.2 Key Features

	2 Example Makefiles
	2.1 Top-level makefile
	2.2 Library makefile
	2.3 Application makefile

