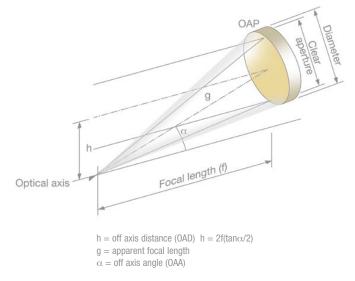
Image Quality and Stability Criteria

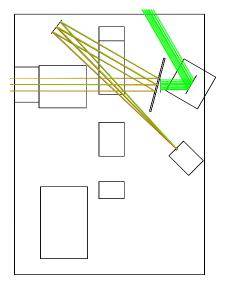
Alex Rea adr34@cam ac. uk

Cavendish Laboratory, University of Cambridge


FTT Meeting Friday 7th May 2010

Alex Rea (Cavendish Labs, Cambridge)

Image Quality and Stability Criteria


7th May 2010 1 / 9

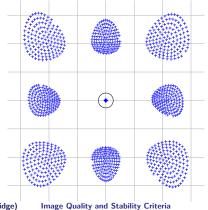
Off-Axis Angle

Alex Rea (Cavendish Labs, Cambridge)

Provisional Layout

Alex Rea (Cavendish Labs, Cambridge)

Criterion was that spread of the image should be no more than two Airy disks across a field of view of \pm 10 arcseconds. Elements were set up correctly, and then perturbed.

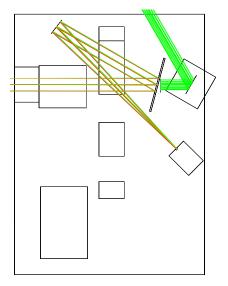

Element	Degree of Freedom	Allowed movement	
Dichroic	Δ x, Δ y, Δ z	Insensitive	
	$\Delta heta_{ m x}$, $\Delta heta_{ m y}$	6 arcmin	
	$\Delta \theta_{\rm z}$	Unconstrained	
OAP	Δ x, Δ y	Unconstrained	
	Δz	$600 \mu { m m}$	
	$\Delta \theta_{\mathrm{x}}$, $\Delta \theta_{\mathrm{y}}$	12 arcmin	
	$\Delta \theta_{\mathrm{z}}$	Unconstrained	
CCD	Δx , Δy	Unconstrained	
	Δz	$600 \mu { m m}$	
	$\Delta heta_{ m x}$, $\Delta heta_{ m y}$	Insensitive	

Alex Rea (Cavendish Labs, Cambridge)

- From a quality perspective, the defocus constraint is easy to meet.
- The angular requirements require the light reflected from the dichroic and the axis of the parent parabola of the OAP to be parallel; it is only the relative angle between the OAP and the dichroic that concerns us for the image quality.
- This fact can therefore perhaps be used to our advantage in the design of the mount?

There are still a couple of sources of potential error not included here...

Manufacturing uncertainties of the parabola can be corrected for, but we need to know what those are. Unfortunately, no indication of the expected uncetainty on the direction of axis. In communication with SORL.


Alex Rea (Cavendish Labs, Cambridge)

Absolute stability requirements are hard - but we already knew this. Criterion was image should not move by more than 0.015 arcseconds, or $\Delta = 1.2 \mu m$ for the focal length being considered here.

Element	Degree of Freedom	Allowed movement		
Dichroic	Δ x, Δ y, Δ z	Insensitive		
	$\Delta heta_{ m x}$, $\Delta heta_{ m y}$	0.36 arcsec		
OAP	Δx , Δy	1.2μ m		
	Δz	Unconstrained		
	$\Delta heta_{ m x}$, $\Delta heta_{ m y}$,	$rctanrac{\Delta}{f'}=0.21$ arcsec		
	$\Delta \theta_{\mathrm{z}}$	$\arctan \frac{\Delta}{OAD} = 0.76$ arcsec		
CCD	Δx , Δy	1.2µm		
	Δz	Unconstrained		
	$\Delta heta_{ m x}$, $\Delta heta_{ m y}$	Insensitive		

Alex Rea (Cavendish Labs, Cambridge)

Image Stability - Expansion

Alex Rea (Cavendish Labs, Cambridge)

ΔT	$\Delta y_{\rm D}$	$\Delta z_{\rm D}$	Δy_{P}	Δz_{P}	$\Delta y_{ m C}$	$\Delta z_{\rm C}$	Movement
0.5	2.13	1.68	4.14	0.19	-0.1775	2.40	1.53
1	4.25	3.35	8.28	-0.38	-0.355	4.81	3.08
2	8.50	6.70	16.56	-0.76	-0.71	9.62	6.14
5	21.25	16.75	41.4	-1.88	-1.78	24.05	15.4
0.5	0	3.56	2.05	0	-0.23	0.43	1.4
1	0	7.12	4.10	0	-0.46	0.85	2.81
2	0	14.24	8.20	0	-0.92	1.70	5.58
5	0	35.6	20.5	0	-2.3	4.25	14.07

Lengths in μ m, temperature in $^{\circ}$ C

(Uniform) expansion of the table does not affect angles. Top data have the expansion about the centre of the table, bottom data have the expansion under the light ray.

Defocus is not shown, but is under 50μ m in all cases.

Alex Rea (Cavendish Labs, Cambridge)