Modelling and Simulation of Conical Spiral Antennas

Aziz Jiwani and Shantanu Padhi

AAVP workshop
University of Cambridge, UK
9 December 2010
Motivation

• Most antennas are not able to maintain characteristics across >2:1 bandwidth

• Consider antennas having true frequency independence
 – Beam pattern (width, co-polarisation etc.)
 – Impedance

• Higher gain elements
 – More 'effective area' per element
 – SKA station requires fewer elements to attain A_e/T
 – Economic implications (all digital array?)

• We examine conical antennas as example high-gain, frequency-independent antenna for SKA-low station studies
Conical Log Spiral

Conical spiral: early work

Beam pattern, impedance and axial ratio

Conical spiral: early work

Beam pattern, impedance and axial ratio

- Antenna characteristics with frequency
 - Nearly constant beam pattern
 - Low back-lobe at all but lowest frequency
 - Relatively small, smooth impedance variation
 - Good axial ratio maintained
Conical spiral: early work

Mutual coupling

Conical spiral: early work

Mutual coupling

- Spiral features
 - Low mutual coupling
 - Polarisation purity
 - Good isolation
Conical spiral: early work

Beamwidth

<table>
<thead>
<tr>
<th>Wrap Angle, α (deg)</th>
<th>$2\theta_0 = 2^\circ$</th>
<th>$2\theta_0 = 5^\circ$</th>
<th>$2\theta_0 = 10^\circ$</th>
<th>$2\theta_0 = 15^\circ$</th>
<th>$2\theta_0 = 20^\circ$</th>
<th>$2\theta_0 = 30^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>49</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>85</td>
<td>37</td>
<td>50</td>
<td>58</td>
<td>64</td>
<td>68</td>
<td>74</td>
</tr>
<tr>
<td>80</td>
<td>38</td>
<td>53</td>
<td>63</td>
<td>70</td>
<td>74</td>
<td>81</td>
</tr>
<tr>
<td>75</td>
<td>41</td>
<td>56</td>
<td>70</td>
<td>78</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>70</td>
<td>44</td>
<td>60</td>
<td>79</td>
<td>88</td>
<td>95</td>
<td>103</td>
</tr>
<tr>
<td>65</td>
<td>47</td>
<td>65</td>
<td>89</td>
<td>100</td>
<td>108</td>
<td>119</td>
</tr>
<tr>
<td>60</td>
<td>52</td>
<td>71</td>
<td>102</td>
<td>114</td>
<td>127</td>
<td>139</td>
</tr>
<tr>
<td>55</td>
<td>57</td>
<td>79</td>
<td>115</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>63</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>69</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conical spiral: early work

Beamwidth

• Parameters control beamwidth
• Able to obtain wider beamwidth for better sky coverage
Dual polarised design derivatives

- Conical Log Spiral (CLS) is a single-polarised antenna while SKA-low requires a dual-polarised one.

- We are exploring designs for dual-polarised spirals

- One example
 - Opposite hand spirals wound on single former
 - Counter-wound Co-axial Conical Log Spiral (C3LS) antenna
Simulation of antennas

• Simulation of CLS antenna showed independent results which were similar to previously constructed spiral antennas
 – Motivating us to start our prototyping of the antenna.

• C3LS antenna simulation proving difficult
 – Two overlapping layers could not be distinguished by simulation software as two separate layers
 – Larger separation and finer meshing gives indication that antenna pattern might rotate through higher modes as a function of frequency

• It was decided to
 – Prototype C3LS antenna to study it in more detail
 – Improve simulation

• Work in progress
Return loss is less than -10 dB over operating bandwidth

Impedance is constant through operating bandwidth
Gain at zenith

>5.5dBi gain over the frequency range
Prototyping of the antennas

- 350-2250 MHz band CLS and C3LS antenna constructed (1/5 SKA-low scale)
- 3:1 BALUN to feed C3LS
- No BALUN for CLS
- Construction errors
 - Maintaining continuity of spiral arm over cone
 - Elliptical cone due to material tension
 - Non-rigid former for C3LS
- From measurements we found
 - Small mechanical errors on top end of spiral affected radiation and terminal characteristics
 - Without BALUN, asymmetry is introduced in radiation pattern
Measurement of the Prototypes

Chamber measurements

- Chamber measurements can be made only up to 1 GHz
- The floor was not absorbing
- Future measurements to include foam floor panels

Outdoor measurements

- Outdoor measurements influenced by reflections and (some) RFI
- Future measurements to include 3 m high masts and foam floor panels
Radiation pattern of the CLS antenna at 350, 650 and 1000 MHz

Note: Measurements made in chamber
Measured C3LS results

Very recent, still developing antenna & measurement process

Inner spiral

Outer spiral

Radiation pattern of the C3LS antenna at 476 MHz

Note: Measurements made in chamber
Continuing work

• Make mechanically robust and accurate antennas for testing
• Build mechanically robust antennas
• Build prototype array for testing and measurement
• Explore other spiral derivatives
 – Pyramidal Sinuous
 – Modulated Arm Width (MAW)
• Explore other high-gain, frequency-independent antennas for SKA system design
• Collaborate in lower-gain element development and testing