A Catalogue of Galactic Supernova Remnants (2000 August version)

D.A. Green

Mullard Radio Astronomy Observatory
Cavendish Laboratory
Madingley Road
Cambridge CB3 0HE
UNITED KINGDOM

E-mail: D.A.Green@mrao.cam.ac.uk

Please reference this catalogue as follows.

• Green D.A., 2000, 'A Catalogue of Galactic Supernova Remnants (2000 August version)', Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge, UK (available on the World-Wide-Web at "http://www.mrao.cam.ac.uk/surveys/snrs/").

1. The Catalogue Format

This catalogue of Galactic supernova remnants (SNRs) is an updated version of those presented in detail in Green (1984, 1988), in summary form in Green (1991, 1996) — hereafter Versions I, II, III and IV respectively — and on the World-Wide-Web (versions of 1995 July, 1996 August and 1998 September). (Note that Version IV, although published in 1996, was produced in 1993.)

This, the 2000 August version of the catalogue contains 225 SNRs (which is five more than in the previous, 1998 September, version), with about thousand references in the detailed listings, plus notes on several dozen possible or probable remnants.

For each remnant in the catalogue the following parameters are given.

- Galactic Coordinates of the source centroid, quoted to the nearest tenth of a degree as is conventional. (Note: in this catalogue additional leading zeros are not used.)
- Other Names that are commonly used for the remnant. These are given in parentheses if the remnant is only a part of the source. For some remnants, notably the Crab Nebula, not all common names are given.
- **Right Ascension** and **Declination** of the source centroid. The accuracy of the quoted values depends on the size of the remnant; for small remnants they are to the nearest few seconds of time and the nearest minute of arc respectively, whereas for larger remnants they are rounded to coarser values, but are in every case sufficient to specify a point within the boundary of the remnant. These coordinates are almost always deduced from radio maps rather than from X-ray or optical observations, and are for J2000.0 (unlike all previous versions of the catalogue, for which the coordinates were given for B1950.0).
- Angular Size of the remnant, in arcminutes, usually taken from the highest resolution radio map available, although for some barely resolved sources that are thought to be SNRs the only available size is that from Gaussian models after deconvolution with the observed beam size. The boundary of most remnants approximates reasonably well to a circle or an ellipse; a single value is quoted for the angular size of the more nearly circular remnants, which is the diameter of a circle with an area equal to that of the remnant, but for elongated remnants the product of two values is quoted, and these are the major and minor axes of the remnant boundary modelled as an ellipse. In a few cases an ellipse is not a satisfactory description of the boundary of the object (refer to the description of the individual object given in its catalogue entry), although an angular size is still quoted for information. For 'filled-centre' remnants the size quoted is for the largest extent of the observed radio emission, not, as at times has been used by others, the half-width of the centrally brightened peak.

- Flux Density of the remnant at 1 GHz in jansky. This is *not* a measured value, but is deduced from the observed radio frequency spectrum of the source. The frequency of 1 GHz is chosen because flux density measurements at frequencies both above and below this value are usually available.
- Spectral Index of the integrated radio emission from the remnant, α (here defined in the sense, $S \propto v^{-\alpha}$, where S is the flux density at a frequency v), either a value that is quoted in the literature, or one deduced from the available integrated flux densities of the remnant. For several SNRs a simple power law is not adequate to describe their radio spectra, either because there is evidence that the integrated spectrum is curved or the spectral index varies across the face of the remnant. In these cases the spectral index is given as 'varies' (refer to the description of the remnant and recent references in the catalogue entry for more information). In some cases, for example where the remnant is highly confused with thermal emission, the spectral index is given as '?' since no value can be deduced with any confidence.
- Type of the SNR, either 'S', 'F' or 'C' if the remnant shows a 'shell', 'filled-centre' or 'composite' (or 'combination') radio structure (or 'S?', 'F?' or 'C?', respectively, if there is some uncertainty), or '?' in several cases where an object is conventionally regarded as an SNR even though its nature is poorly known or not well understood. (Note: the term 'composite' has been used in a different sense by some authors, to describe SNRs with shell radio and centrally-brightened X-ray morphologies. An alternative term used to describe such remnants is 'mixed morphology', see Rho & Petre 1998.)

In the detailed listings, for each remnant, notes on a variety of topics are given. First, it is noted if other Galactic coordinates have at times been used to label it (usually before good observations have revealed the full extent of the object), if the SNR is thought to be the remnant of a historical SN, or if the nature of the source as an SNR has been questioned (in which case an appropriate reference is usually given later in the entry). Brief descriptions of the remnant from the available radio, optical and X-ray observations as applicable are then given, together with notes on available distance determinations, and any point sources or pulsars in the field of the object (although they may not necessarily be related to the remnant). Finally, appropriate references to observations are given for each remnant, complete with journal, volume, page, and a short description of what information each paper contains (for radio observations these include the telescopes used, the observing frequencies and resolutions, together with any flux density determinations). These references are not complete, but cover representative and recent observations of the remnant, and they should themselves include references to earlier work. The references do not generally include large observational surveys — of particular interest in this respect are: the Effelsberg 100-m survey at 2.7 GHz of the Galactic plane $358^{\circ} < l < 240^{\circ}$, $|b| < 5^{\circ}$ by Reich et al. (1990) and Fürst et al. (1990); reviews of the radio spectra of some SNRs by Kassim (1989), Kovalenko, Pynzar' & Udal'tsov (1994) and Trushkin (1998); the Parkes 64-m survey at 2.4 GHz of the Galactic plane $238^{\circ} < l < 365^{\circ}$, $|b| < 5^{\circ}$ by Duncan et al. (1995) and Duncan et al. (1997); the Molonglo Galactic plane survey at 843 MHz of $245^{\circ} < l < 355^{\circ}$, $|b| < 1^{\circ}.5$ by Green et al. (1999); reviews of Einstein X-ray imaging and spectroscopic observations of Galactic SNRs by Seward (1990) and Lum et al. (1992) respectively; surveys of IRAS observations of SNRs and their immediate surroundings by Arendt (1989) and by Saken, Fesen & Shull (1992); the survey of HI emission towards SNRs by Koo & Heiles (1991); and the catalogue by Fesen & Hurford (1996) of UV/optical/infra-red lines identified in SNRs.

A summary of the data available for all 225 remnants in the catalogue is given in Table I. The other names for SNRs are listed in Table II, and the abbreviations for journals, proceedings and telescopes are listed in Table III. The detailed listings for each SNR are given in Table IV.

2. Revisions and Notes

2.1 Objects no longer thought to be SNRs

The following objects, which were listed in Version I of the catalogue were removed because they were no longer thought to be remnants, or are poorly observed (see Version II for references and further details): G2.4+1.4 (see also Gray 1994a; Goss & Lozinskaya 1995; Polcaro *et al.* 1995), G41.9-4.1 (=CTB 73, PKS 1920+06), G47.6+6.1 (=CTB 63), G53.9+0.3 (part of HC40), G93.4+1.8 (=NRAO 655), G123.2+2.9, G194.7+0.4 (the Origem Loop), G287.8-0.5 (see below), G322.3-1.2 (=Kes 24) and G343.0-6.0 (see below).

G350.1–0.3, which was listed in Version II of the catalogue, was removed as it is no longer thought to be a SNR (see Version III for details).

G358.4–1.9, which was listed in Version IV of the catalogue, was removed, as following the discussion of Gray (1994a), as it is not clear that this is a SNR.

G240.9—0.9, G299.0+0.2 and G328.0+0.3, which were listed in 1995 July version of the catalogue, were removed from the 1996 August version, following the improved observations of Duncan *et al.* (1996) and Whiteoak & Green (1996).

For the 1998 September revision of the catalogue G350.0–1.8 was incorporated into G350.0–2.0, and G337.0–0.1 refers to a smaller remnant than that previously catalogued with the same name.

The following objects, which have been reported as SNRs, but have not been included in any of the versions of the SNR catalogue, have subsequently been shown not to be SNRs.

- G70.7+1.2, which was reported as a SNR by Reich *et al.* (1985), but this has not been confirmed by later observations (see Green 1986; de Muizon *et al.* 1988; Becker & Fesen 1988; Caswell 1988; Bally *et al.* 1989; Phillips, Onello & Kulkarni 1993; Onello *et al.* 1995).
- G81.6+1.0 a possible SNR in W75 reported by Ward-Thompson & Robson (1991). From the published data (see the observations in Wendker, Higgs & Landecker 1991) it was noted in Version IV of the catalogue that this is thermal source not a SNR, because of its thermal radio spectrum, and high infrared-to-radio emission (see also the subsequent discussion by Wendker *et al.* 1993).
- Green & Gull (1984) suggested that G227.1+1.0 as a very young SNR, but subsequent observations (Channan *et al.* 1986; Green & Gull 1986) have shown that this is most likely an extragalactic source, not an SNR.
- A candidate SNR, G274.7—2.8, identified by Helfand & Channan (1989), has been shown not to be a SNR by Caswell & Stewart (1991).
- G25.5+0.2, which was reported as a very young SNR by Cowan *et al.* (1989), although this identification was not certain (see White & Becker 1990; Green 1990; Zijlstra 1991). Sramek *et al.* (1992) report the detection of recombination lines from this source (also see Subrahmanyan *et al.* 1993). Becklin *et al.* (1994) identify G25.5+0.2 as a ring nebula around a luminous blue star.
- Most of the possible SNRs listed by Gorham (1990) following up SNR candidates suggested by Kassim (1988) have been shown not to be SNRs by Gorham, Kulkarni & Prince (1993).
- G203.2—12.3, a optical ring about 3 arcmin in diameter, was reported as a possible SNR by Winkler & Reipurth (1992), but was shown to be a Herbig—Haro object (HH 311) by Reipurth, Bally & Devine (1997).
- G359.87+0.18 was reported as a possible young SNR near the Galactic Centre by Yusef-Zadeh, Cotton & Reynolds (1998), but was shown to be a radio galaxy by Lazio *et al.* (1999).

Some entries in the catalogue have been renamed, due to improved observations revealing a larger true extent for the object (previously G5.3–1.0 is now G5.4–1.2; G193.3–1.5 is now G192.8–1.1; G308.7+0.0 is now incorporated into G308.8–0.1). G337.0–0.1 now refers to a small (1.5 arcmin) remnant, rather than larger supposed remnant at this position (see Sarma *et al.* 1997), and G350.0–2.0 now incorporates the previously catalogued G350.0–1.8, based on the improved observations of Gaensler (1998).

2.2 New SNRs

The following remnants were added to Version II of the catalogue: G0.9+0.1, G1.9+0.3, G5.9+3.1, G6.4+4.0, G8.7-0.1, G16.8-1.1, G18.9-1.1, G20.0-0.2, G27.8+0.6, G30.7+1.0, G31.5-0.6, G36.6-0.7, G42.8+0.6, G45.7-0.4, G54.1+0.3, G73.9+0.9, G179.0+2.6, G312.4-0.4, G357.7+0.3 and G359.1-0.5.

The following remnants were added to Version III of the catalogue: G4.2-3.5, G5.2-2.6, G6.1+1.2, G8.7-5.0, G13.5+0.2, G15.1-1.6, G16.7+0.1, G17.4-2.3, G17.8-2.6, G30.7-2.0, G36.6+2.6, G43.9+1.6, G59.8+1.2, G65.1+0.6, G68.6-1.2, G69.7+1.0, G279.0+1.1, G284.3-1.8 (=MSH 10-53), G358.4-1.9 and G359.0-0.9.

The following remnants were added to Version IV of the catalogue: G59.5+0.1, G67.7+1.8, G84.9+0.5, G156.2+5.7, G318.9+0.4, G322.5-0.1, G343.1-2.3, and G348.5-0.0.

The following remnants were added to 1995 July version of the catalogue: G1.0-0.1, G1.4-0.1, G3.7-0.2, G3.8+0.3, G28.8+1.5, G76.9+1.0, G272.2-3.2, G341.2+0.9, G354.1+0.1, G355.6-0.0, G356.3-0.3, G356.3-1.5 and G359.1+0.9.

The following remnants were added to the 1996 August version of the catalogue: G13.3–1.3 G286.5–1.2, G289.7–0.3, G294.1–0.0, G299.2–2.9 G299.6–0.5, G301.4–1.0, G308.1–0.7, G310.6–0.3, G310.8–0.4, G315.9–0.0, G317.3–0.2, G318.2+0.1, G320.6–1.6, G321.9–1.1, G327.4+1.0, G329.7+0.4, G342.1+0.9, G343.1–0.7, G345.7–0.2, G349.2–0.1, G351.7+0.8, G351.9–0.9 and G354.8–0.8.

The following remnants were added to the 1998 September version of the catalogue: G0.3+0.0, G32.1-0.9, G55.0+0.3, G63.7+1.1 and G182.4+4.3.

The following remnants have been added to this version of the catalogue.

- G7.0-0.1, a new SNR adjacent to G6.4-0.1 (=W28), identified from radio observations (see Kassim & Yusef-Zadeh 2000 and Yusef-Zadeh *et al.* 2000).
- G16.2–2.7, identified by Trushkin (1999) from radio observations.
- G29.6+0.1, a new SNR found near an AXP (Anomalous X-ray Pulsar) by Gaensler, Gotthelf & Vasisht (1999) from radio observations.
- G266.2–1.2, which overlaps the Vela SNR, which was identified by X-ray observations by Aschenbach (1998).
- G347.3-0.5, which was previously suggested as a SNR by Pfeffermann & Aschenbach (1996) (see also Koyama *et al.* 1997), which was clearly confirmed as a SNR by X-ray and other observations made by Slane *et al.* (1999).

2.3 Possible and probable SNRs not listed in the catalogue

The following are possible or probable SNRs for which further observations are required to confirm their nature or parameters, or for which observations are not yet in the published literature.

2.3.1 Radio

- A possible SNR near the Galactic centre reported by Ho et al. (1985) from radio observations.
- Gosachinskii (1985) reported evidence for non-thermal radio emission, presumably from SNRs, associated with several bright, thermal Galactic sources (also see Odegard 1986, who questions the reliability of some of Gosachinskii's results).
- \bullet G300.1+9.4, a possible SNR nearly 2° in diameter reported by Dubner, Colomb & Giacani (1986) from radio observations.
- Routledge & Vaneldik (1988) report a possible faint shell SNR nearly 2° in diameter at radio wavelengths, near the young pulsar PSR 1930+22 (see also Gómez-González & del Romero 1983, who report a smaller (about 40 arcmin) possible SNR (G57.1+1.7) associated with this pulsar, and see Caswell, Landecker & Feldman 1985 and Kovalenko 1989).
- G28.6–0.2, a possible SNR reported by Helfand *et al.* (1989) from radio observations.
- Five possible remnants (G45.9–0.1, G71.6–0.5, G72.2–0.3, G83.0–0.2 and G85.2–1.2) of the eleven reported by Taylor, Wallace & Goss (1992) from a radio survey of part of the Galactic plane. (Three of the other possible SNRs reported by Taylor *et al.*, are included in the catalogue as G55.0+0.3, G63.7+1.1 and G76.9+1.0.)

- A faint, poorly defined possible remnant G41.1+1.2 reported by Gorham, Kulkarni & Prince (1993) from radio observations.
- G9.7–0.1, a possible SNR report by Frail, Kassim & Weiler (1994) from radio observations.
- G355.4+0.7, G356.6+0.1, G357.1-0.2, G358.1+1.0, G358.5-0.9, G358.7+0.7, G359.2-1.1, G3.1-0.6 and G4.2+0.0, which are among the possible SNRs listed by Gray (1994b) from radio observations near the Galactic centre.
- G104.7+2.8, a possible SNR reported by Green & Joncas (1994) from radio observations. However, recent observations at 10.7 GHz (W. Reich, private communication) cast doubt on this identification, as they do not support a non-thermal radio spectrum for the source.
- G11.2–1.1, a possible SNR listed by Kovalenko, Pynzar' & Udal'tsov (1994), based on unpublished radio studies (Trushkin 1988, preprint).
- Duncan *et al.* (1995) and Duncan *et al.* (1997) list several large-scale (1.5 to 10 degree), and smaller, low radio surface-brightness candidate SNRs from the Parkes 2.4-GHz survey of $270^{\circ} < l < 360^{\circ}$.
- Whiteoak & Green (1996), from their radio survey of much of the southern Galactic plane, list 16 possible SNRs (G308.4–1.4, G317.5+0.9, G319.9–0.7, G320.6–0.9, G322.7+0.1, G322.9–0.0, G323.2–1.0, G324.1+0.1, G325.0–0.3, G331.8–0.0, G337.2+0.1, G339.6–0.6, G345.1+0.2, G345.1–0.2, G348.8+1.1 and G350.1–0.3).
- Several candidate SNRs reported by Combi & Romero (1998), Combi, Romero & Arnal (1998) and Combi, Romero & Benaglia (1998).
- G359.09-0.02, a possible SNR noted by LaRosa *et al.* (2000).
- A possible SNR, G313.3+0.1, near an unidentified Galactic plane γ-ray source (see Roberts *et al.* 1999).
- A likely SNR, called G359.92-0.09, adjacent to G0.0+0.0 (=Sgr A East) at the Galactic centre, see Coil & Ho (2000), and references therein.
- G353.9-2.0, a probable SNR I have identified from the NVSS archive data, details of which are as yet unpublished.

2.3.2 UV/Optical/Infra-red

- G343.0-6.0 was listed in Version I as a SNR, identified optically by Meaburn & Rovithis (1977). However, it was removed from the catalogue in Version II as its extent is uncertain, and it has not been identified at other wavelengths (also see Bedford *et al.* 1984 and Meaburn *et al.* 1991).
- A possible SNR overlapping G296.1–0.5, identified from optical (and X-ray) observations by Hutchings, Crampton & Cowley (1981).
- A SNR (G260.4–3.3) about 4 arcmin in diameter within the Puppis A remnant identified optically by Winkler *et al.* (1989). This has not been detected at radio wavelengths (see Dubner *et al.* 1991).
- A possible SNR (G32.1+0.1) reported from optical spectroscopy by Thompson, Djorgovski & de Carvalho (1991), following up radio and infrared observations of Jones, Garwood & Dickey (1988).
- G75.5+2.4, a possible large (about 2°) old SNR in Cygnus suggested by Nichols-Bohlin & Fesen (1993) from infra-red and optical observations (see also Dewdney & Lozinskaya 1994; Marston 1996; Esipov *et al.* 1996).
- A possible optical SNR (G247.8+4.9) noted by Weinberger (1995), which may be Balmer dominated (see also Weinberger *et al.* 1998 and Zanin & Kerber 2000).
- An optical shell around the Coalsack Nebula (near $l=300^\circ$, $b=0^\circ$) identified by Walker & Zealey (1998). This coincides with one of the large possible SNRs suggested by Duncan *et al.* (1995), from radio observations.

2.3.3 X-ray

- H1538–32 a large X-ray source in Lupus, near $l = 307^{\circ}$, $b = +20^{\circ}$ (Riegler, Agrawal & Gull 1980, see also Colomb, Dubner & Giacani 1984 and Gahm *et al.* 1990) which is a possible old SNR;
- The Monogem ring, near $l = 203^{\circ}$, $b = +12^{\circ}$, is a possible old SNR (see Nousek *et al.* 1981, Plucinsky *et al.* 1996, and references therein).
- X-ray emission in the Gum Nebula near $l=250^{\circ}$, $b=0^{\circ}$ (Leahy, Nousek & Garmire 1992, see also Reynolds 1976, Dubner *et al.* 1992, Duncan *et al.* 1996, Reynoso & Dubner 1997, Heiles 1998) which, together with optical spectroscopy indicate the existence of a possible old remnant in this region.
- An X-ray enhancement near $l = 200^{\circ}$, $b = -40^{\circ}$, which is possibly due due to an old SNR in Eridanus (Naranan *et al.* 1976, see also Burrows *et al.* 1993, Snowden *et al.* 1995, Heiles 1998).
- G189.6+3.3, a faint, possible SNR overlapping G189.1+3.0 (=IC443) identified by Asaoka & Aschenbach (1994) from ROSAT X-ray observations.
- G117.7+0.6, a faint shell of soft X-ray emission near CTB1 (=G116.9+0.2), which contains a pulsar (Hailey & Craig 1995, see also Craig, Hailey & Pisarski 1997).
- A possible SNR identified in X-rays around the pulsar B1828–13 (see Finley, Srinivasan & Park 1996).
- A possible, large SNR, G69.4+1.2, identified as an X-ray shell by Yoshita, Miyata & Tsunemi (1999).

2.3.4 Other

- G287.8–0.5, which is associated with η Carinae, was listed in Version I as a SNR, but was removed from the catalogue in Version II as its parameters are uncertain (see Jones 1973, Retallack 1984, Tateyama, Strauss & Kaufmann 1991, and the discussion in Version II).
- G359.2-0.8 (the 'mouse'), near the Galactic centre, which has been suggested as being analogous to the central region of CTB 80 (=G69.0+2.7) by Predehl & Kulkarni (1995).

It should also be noted that some radio loops in the Galactic plane (see, for example, Berkhuijsen 1973) may be parts of very large, old SNRs, but they have not been included in the catalogue (see also Combi *et al.* 1995; Maciejewski *et al.* 1996), nor have pulsar wind nebulae (see, for example, Gaensler *et al.* 1998).

2.4 Questionable SNRs listed in the catalogue

As noted in Versions II and IV of the catalogue, the following sources are listed as SNRs, although, as discussed in each case, the identifications are not certain: G5.4–1.2, G39.7–2.0 (=W50), G65.7+1.2 (=DA 495), G69.0+2.7 (=CTB 80), G318.9+0.4 and G357.7–0.1. The nature of G76.9+1.0 (an unusual radio source similar to G65.7+1.2 (=DA 495)), and of G354.1+0.1 (which appears may be similar to G357.7–0.1 (=MHS 17–39)) are also uncertain (see Landecker, Higgs & Wendker 1993 and Frail, Goss & Whiteoak 1994 respectively).

There are also some objects that have been identified as SNRs and are listed in the catalogue, although they have been barely resolved in the available observations, or are faint, and have not been well separated from confusing background or nearby thermal emission, and their identification as SNRs, or at least their parameters remain uncertain.

Acknowledgements

I am grateful to the many colleagues who have commented previous version of the catalogue, and have brought errors and omissions to my attention. No doubt errors remain in this version, and I am always happy to receive feedback from users of the catalogue. This research has made use of NASA's Astrophysics Data System Bibliographic Services.

References

Arendt R.G., 1989, ApJS, 70, 181.

Asaoka I. & Aschenbach B., 1994, A&A, 284, 573.

Aschenbach B., 1998, Natur, 396, 141.

Bally J., Pound M.W., Stark A.A., Israel F., Hirano N., Kameya O., Sunada K., Hayashi M., Thronson H. & Hereld, M., 1989, ApJ, 338, L65.

Becker R.H. & Fesen R.A., 1988, ApJ, 334, L35.

Becklin E.E., Zuckerman B., McLean I.S. & Geballe T., 1994, ApJ, 430, 774.

Bedford D.K., Elliott K.H., Ramsey B. & Meaburn J., 1984, MNRAS, 210, 693.

Berkhuijsen E.M., 1973, A&A, 24, 143.

Burrows D.N., Singh K.P., Nousek J.A., Garmire G.P. & Good, J., 1993, ApJ, 406, 97.

Caswell J.L., 1988, in SNRISM, p269.

Caswell J.L. & Stewart R.T., 1991, PASAu, 9, 103.

Caswell J.L., Landecker T.L. & Feldman P.A., 1985, AJ, 90, 488.

Channan G.A., Helfand D.J., Spinrad H. & Ebneter K., 1986, Natur, 320, 41.

Coil A.L. & Ho P.T.P., 2000, ApJ, 533, 245.

Colomb F.R., Dubner G.M. & Giacani E.B., 1984, A&A, 130, 294.

Combi J.A. & Romero G.E., 1998, A&AS, 128, 423.

Combi J.A., Testari J.C., Romero G.E. & Colomb F.R., 1995, A&A, 296, 514.

Combi J.A., Romero G.E. & Arnal E.M., 1998, A&A, 333, 298.

Combi J.A., Romero G.E. & Benaglia P., 1998, A&A, 333, L91.

Cowan J.J., Ekers R.D., Goss W.M., Sramek R.A., Roberts, D.A. & Branch D., 1989, MNRAS, 241, 613.

Craig W.W., Hailey C.J. & Pisarski R.L., 1997, ApJ, 488, 307.

de Muizon M., Strom R.G., Oort M.J.A., Claas J.J. & Braun R., 1988, A&A, 193, 248.

Dewdney P.E. & Lozinskaya T.A., 1994, AJ, 108, 2212.

Dubner G.M., Colomb F.R. & Giacani E.B., 1986, AJ, 91, 343.

Dubner G.M., Braun R., Winkler P.F. & Goss 1991, AJ, 101, 1466.

Dubner G., Giacani E., Cappa de Nicolau C. & Reynoso E., 1992, A&AS, 96, 505.

Duncan A.R., Stewart R.T., Haynes R.F. & Jones K.L., 1995, MNRAS, 277, 36.

Duncan A.R., Stewart R.T., Haynes R.F. & Jones K.L., 1996, MNRAS, 280, 252.

Duncan A.R., Stewart R.T., Haynes R.F. & Jones K.L., 1997, MNRAS, 287, 722.

Esipov V.F., Lozinskaya T.A., Mel'nikov V.V., Pravdikova V.V., Sitnik T.G. & Nichol-Bohlin J., 1996, ALet, 22, 509.

Fesen R.A. & Hurford A.P., 1996, ApJS, 106, 563.

Finley J.P., Srinivasan R. & Park S., 1996, ApJ, 466, 938.

Frail D.A., Goss W.M. & Whiteoak J.B.Z., 1994, ApJ, 437, 781.

Frail D.A., Kassim N.E. & Weiler K.W., 1994, AJ, 107, 1120.

Fürst E., Reich W., Reich P. & Reif K., 1990, A&AS, 85, 691.

Gaensler B.M., 1998, ApJ, 493, 781.

Gaensler B.M., Gotthelf E.V. & Vasisht G., 1999, ApJ, 526, L37.

Gaensler B.M., Stappers B.W., Frail D.A. & Johnston S., 1998, ApJ, 499, L69.

Gahm G.F., Gebeyehu M., Lindgren M., Magnusson P., Modigh P. & Nordh H.L., 1990, A&A, 228, 477.

Gómez-González J. & del Romero A., 1983, A&A, 123, L5.

Gorham P.W., 1990, ApJ, 364, 187.

Gorham P.W., Kulkarni S.K. & Prince T.A., 1993, AJ, 105, 314.

Gosachinskii I.V., 1985, SvA, 29, 128.

Goss W.M. & Lozinskaya T.A., 1995, ApJ, 439, 637.

Gray A.D., 1994a, MNRAS, 270, 835.

Gray A.D., 1994b, MNRAS, 270, 847.

Green A.J., Cram L.E., Large M.I. & Ye T.S., 1999, ApJS, 122, 207.

Green D.A., 1984, MNRAS, 209, 449 (Version I).

Green D.A., 1986, MNRAS, 219, 39P.

Green D.A., 1988, Ap&SS, 148, 3 (Version II).

Green D.A., 1990, AJ, 100, 1241.

Green D.A., 1991, PASP, 103, 209 (Version III).

Green D.A., 1996, in *Supernovae and Supernova Remnants*, (proceedings of IAU Colloquium 145, Xi'an China, 1993 May 24–29), eds McCray R. & Wang Z., (Cambridge University Press), p.419 (Version IV).

Green D.A. & Gull S.F., 1984, Natur, 312, 527.

Green D.A. & Gull S.F., 1986, Natur, 320, 42.

Green D.A. & Joncas G., 1994, A&AS, 104, 481.

Hailey C.J. & Craig W.W., 1995, ApJ, 455, L151.

Heiles C., 1998, ApJ, 498, 689.

Helfand D.J. & Channan G.A., 1989, AJ, 98, 1652.

Helfand D.J., Velusamy T., Becker R.H. & Lockman F.J., 1989, ApJ, 341, 151.

Hutchings J.B., Crampton D. & Cowley P.A., 1981, AJ, 86, 871.

Ho P.T., Jackson J.M., Barrett A.H. & Armstrong J.T., 1985, ApJ, 288, 575.

Jones B.B., 1973, AuJPh, 26, 545.

Jones T.J., Garwood R. & Dickey J.M. 1988, ApJ, 328, 559.

Kassim N.E., 1988, ApJ, 328, L55.

Kassim N.E., 1989, ApJS, 71, 799.

Kassim N.E. & Yusef-Zadeh F., 2000, in *Radio Astronomy at Long Wavelengths*, eds Stone R.G., Weiler K.W., Goldstein M.L. & Bougeret J.-L., (American Geophysical Union, Monongraph 119), p.287.

Koo B.-C. & Heiles C., 1991, ApJ, 382, 204.

Kovalenko A.V., 1989, SvAL, 15, 144.

Kovalenko A.V., Pynzar' A.V. & Udal'tsov V.A., 1994, ARep, 38, 95.

Koyama K., Kinugasa K., Matsuzaki K., Nishiuchi M., Sugizaki M., Torii K., Yamauchi S., & Aschenbach B., 1997, PASJ, 49, L7.

Landecker T.L., Higgs L.A. & Wendker H.I., 1993, A&A, 276, 522.

LaRosa T.N., Kassim N.E., Lazio T.J.W. & Hyman S.D., 2000, AJ, 119, 207.

Lazio T.J.W., Anantharamaiah K.R., Goss W.M., Kassim N.E. & Cordes J.M., 1999, ApJ, 515, 196.

Leahy D.A., Nousek J. & Garmire G., 1992, ApJ, 385, 561.

Lum K.S.K., Canizares C.R., Clark S.W., Coyne J.M., Markert T.H., Saez P.J., Schattenburg M.L. & Winkler P.F., 1992, ApJS, 78, 423.

Maciejewski W., Murphy E.M., Lockman F.J. & Savage B.D., 1996, ApJ, 469, 238.

Marston A.P., 1996, AJ, 112, 2828.

Meaburn J. & Rovithis P., 1977, Ap&SS, 46, L7.

Meaburn J., Goudis C., Solomos N. & Laspias V., 1991, A&A, 252, 291.

Naranan S., Shulman S., Friedman H. & Fritz G., 1976, ApJ, 208, 718.

Nichols-Bohlin J. & Fesen R.A., 1993, AJ, 105, 672.

Nousek J.A., Cowie L.L., Hu E., Lindblad C.J. & Garmire G.P., 1981, ApJ, 248, 152.

Odegard N., 1986, AJ, 92, 1372.

Onello J.S., DePree C.G., Phillips J.A. & Goss W.M., 1995, ApJ, 449, L127.

Pfeffermann E. & Aschenbach B., 1996, in *Röntgenstrahlung from the Universe*, eds Zimmermann H.U., Trümper J. & Yorke H., (MPE Report 263), p.267.

Phillips J.A., Onello J.S. & Kulkarni S.R., 1993, ApJ, 415, 143.

Plucinsky P.P., Snowden S.L., Aschenbach B., Eggar R., Edgar R.J. & McCammon D., 1996, ApJ, 463, 224.

Polcaro V.F., Rossi C., Norci L. & Viotti R., 1995, A&A, 303, 211.

Predehl P. & Kulkarni S.R., 1995, A&A, 294, L29.

Reich W., Fürst E., Altenhoff W.J., Reich P. & Junkes N., 1985, A&A, 151, L10.

Reich W., Fürst E., Reich P. & Reif K., 1990, A&AS, 85, 633.

Reipurth B., Bally J. & Divine D., 1997, AJ, 114, 2708.

Retallack D.S., 1983, MNRAS, 204, 669.

Reynolds R., 1976, ApJ, 206, 679.

Reynoso E.M. & Dubner G.M. 1997, A&AS, 123, 31.

Rho J. & Petre R., 1998, ApJ, 503, L167.

Riegler G.R., Agrawal P.C. & Gull S.F., 1980, ApJ, 235, L71.

Roberts M.S.E., Romani R.W., Johnston S. & Green A.J., 1999, ApJ, 515, 712.

Routledge D. & Vaneldik J.F., 1988, ApJ, 326, 751.

Saken J.M., Fesen R.A. & Shull J.M., 1992, ApJS, 81, 715.

Sarma A.P., Goss W.M., Green A.J. & Frail D.A., 1997, ApJ, 483, 335.

Seward F.D., 1990, ApJS, 73, 781.

Slane P., Gaensler B.M., Dame T.M., Hughes J.P., Plucinsky P.P. & Green A.J., 1999, ApJ, 525, 357.

Snowden S.L., Burrows D.N., Sanders W.T., Aschenbach B. & Pfeffermann E., 1995, ApJ, 439, 399.

Sramek R.A., Cowan J.J., Roberts D.A., Goss W.M. & Ekers R.D., 1992, AJ, 104, 704.

Subrahmanyan R., Ekers R.D., Wilson W.E., Goss W.M. & Allen, D.A., 1993, MNRAS, 263, 868.

Tateyama C.E., Strauss F.M. & Kaufmann P., 1991, MNRAS, 249, 716.

Taylor A.R., Wallace B.J. & Goss W.M., 1992, AJ, 103, 931.

Thompson D.J., Djorgovski S. & de Carvalho R.R., 1991, PASP, 103, 487.

Trushkin S.A., 1998, BSAO, 46, 62.

Trushkin S.A., 1999, A&A, 352, L103.

Walker A. & Zealey W.J., 1998, PASA, 15, 79.

Ward-Thompson D. & Robson E.I., 1991, MNRAS, 248, 670.

Weinberger R., 1995, PASP, 107, 58.

Weinberger R., Tajitsu A., Tamura S. & Yadoumaru Y., 1998, PASP, 110, 722.

Wendker H.I., Higgs L.A. & Landecker T.L., 1991, A&A, 241, 551.

Wendker H.I., Higgs L.A., Landecker T.L. & Ward-Thompson D., 1993, MNRAS, 263, 543.

White R.L. & Becker R.H., 1990, MNRAS, 244, 12P.

Whiteoak J.B.Z. & Green A.J., 1996, A&AS, 118, 329.

Winkler P.F. & Reipurth B., 1992, ApJ, 389, L25.

Winkler P.F., Kirshner R.P., Hughes J.P. & Heathcote S.R. 1989, Natur, 337, 48.

Yoshita K., Niyata E. & Tsunemi H., 1999, AN, 320, 344.

Yusef-Zadeh F., Cotton W.D. & Reynolds S.P., 1998, ApJ, 498, L55.

Yusef-Zadeh F., Shure M., Wardle M. & Kassim N., 2000, ApJ, 540, 842.

Zanin C. & Kerber F., 2000, A&A, 356, 274.

Zijlstra A.A., 1991, MNRAS, 248, 11P.

0.0 +0.0 174544 -2900 3.5 × 2.5 S 100? 0.8? 0.3 +0.0 174615 -2838 15 × 8 S 22 0.6 0.9 +0.1 174721 -2809 8 C 187 1.0 -0.1 174930 -2809 8 S 15 0.6? 1.4 -0.1 174939 -2746 10 S 2? ? 1.9 +0.3 174845 -2710 1.2 S 0.6 0.7 3.7 -0.2 175526 -2550 14×11 S 2.3 0.65 3.8 +0.3 175255 -2528 18 S 2 4? 4.2 -3.5 180855 -2703 28 S 3.2? 0.6? 4.5 +6.8 173042 -2129 3 S 19 0.64 5.4 -1.2 180210 -2454 35 C? 35? 0.2? 5.9 +3.1 174720 -2216 20 S 3.39 0.4? 6.1 +1.2 175455 -2305 30 × 26 F 4.0? 0.3? 6.4 -0.1 180150 -2254 15 S 2.59 0.2? 6.1 +1.2 175455 -2305 30 × 26 F 4.0? 0.3? 6.4 -0.1 180150 -2254 15 S 2.59 0.5? 7.7 -3.7 181725 -2404 22 S 11 0.32 1814-24 8.7 -5.0 182410 -2348 26 S 4.4 0.3 8.7 -0.1 180530 -2126 45 S 2.9 0.5 9.8 +0.6 180508 -2014 12 S 3.9 0.5 10.0 -0.3 180839 -2025 87 ? 2.9 0.8 11.2 -0.3 181127 -1925 4 C 2 2 0.49 11.4 -0.1 181047 -1905 8 S? 6 0.5 12.0 -0.1 18121 -1837 7? 3.5 1.37 0.49 13.3 -1.3 181920 -1446 30 × 247 ? 2.9 0.8 15.9 +0.2 181852 -1502 7 × 5 S 5 5 0.8? 15.9 +0.2 181852 -1502 7 × 5 S 5 5 0.8? 15.9 +0.2 181852 -1502 7 × 5 S 5 5 0.8? 15.9 +0.2 181852 -1502 7 × 5 S 5 5 0.6? 16.7 +0.1 182056 -1420 4 C 3.0 0.6 16.8 -1.1 182550 -1446 80 × 247 ? 2.9 17.4 -2.3 183055 -1452 247 S 4 S 3.59 17.5 -0.9 183333 -1035 4 C 6? 0.0 18.9 -1.1 182050 -1430 24 S 4.0? 0.3? 18.8 +0.3 182350 -1430 24 S 4.0? 0.3? 18.9 -1.1 182050 -1430 24 S 4.0? 0.3? 18.9 -1.1 182050 -1430 30 C 5 S 69 0.5 22.7 -0.2 183315 -0913 26 S? 33 0.6 23.3 -0.3 183445 -0848 27 S 70 0.5 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.5 0.7 0.5 0.6 0.5 0.7 0.7 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	l	b	RA (J2000 (h m s)		size /arcmin	type	Flux at 1 GHz/Jy	spectral index	other name(s)
0.9 +0.1 174721 -2809 8 C 187 varies 1.0 -0.1 174830 -2809 8 S 15 0.6? 1.4 -0.1 174830 -2746 10 S 2? ? 1.9 +0.3 174845 -2710 1.2 S 0.6 0.7 3.7 -0.2 175526 -2550 14×11 S 2.3 0.65 3.8 +0.3 175255 -2528 18 S? 4? ? 4.2 -3.5 180855 -2703 28 S 3.2? 0.6? 4.5 +6.8 173042 -2129 3 S 19 0.64 Kepler, SN1604, 3C358 5.2 -2.6 180730 -2545 18 S 2.6? 0.6? 5.4 -1.2 180210 -2454 35 C? 35? 0.2? Milne 56 5.9 +3.1 174720 -2216 20 S 3.3? 0.4? 6.1 +1.2 175455 -2305 30×26 F 4.0? 0.3? 6.4 +0.1 180030 -2326 42 C 310 varies W28 6.4 +4.0 174510 -2122 31 S 1.3? 0.4? 7.0 -0.1 180150 -2254 15 S 2.5? 0.5? 7.7 -3.7 181725 -2404 22 S 11 0.32 1814-24 8.7 -5.0 182410 -2348 26 S 4.4 0.3 8.7 -0.1 180530 -2126 45 S? 80 0.5 (W30) 9.8 +0.6 180508 -2014 12 S 3.9 0.5 11.2 -0.3 181127 -1925 4 C 22 0.49 11.4 -0.1 181047 -1905 8 S? 6 0.5 12.0 -0.1 18211 -1837 7? 2 3.5 0.7 13.3 -1.3 181920 -1800 70×40 S? ? 13.3 -1.3 181920 -1800 70×40 S? ? 15.9 +0.2 181852 -1502 7×5 S? 5 0.6? 15.9 -0.1 18250 -1446 30×247 ? 2? 7.144 -0.1 182056 -1420 4 C 3.0 0.6 16.8 -1.1 182550 -1446 30×247 ? 2? 7.147 -1925 4 C 22 0.49 11.4 -0.1 181047 -1905 8 S? 6 0.5 12.0 -0.1 18211 -1837 7? 2 3.5 0.7 13.3 -1.3 181920 -1800 70×40 S? ? ? 17.4 -2.3 183055 -1452 247 S 4.8 0.8? 17.4 -2.6 183250 -1449 24 S 3.5 0.6? 16.7 +0.1 182056 -1420 4 C 3.0 0.6 16.8 -1.1 182550 -1446 30×247 ? 2? 7.147 -1925 4 C 22 0.5 16.7 +0.1 182056 -1420 4 C 3.0 0.6 16.8 -1.1 182550 -1446 30×247 ? 2? 7.147 -2.3 183055 -1452 247 S 4.8 0.8? 17.8 -2.6 183250 -1439 24 S 4.0? 0.3? 18.8 +0.3 18238 -1223 17×11 S 33 0.4 Kes 67 18.9 -0.1 182056 -1420 4 C 6? 0.0 21.5 -0.9 183333 -1035 4 C 6? 0.0 21.5 -0.9 183333 -1035 4 C 6? 0.0 21.5 -0.9 183333 -1035 4 C 6? 0.0 21.8 -0.6 183445 -0848 27 S 70 0.5 W41 23.6 -0.3 183445 -0848 27 S 70 0.5 W41 23.6 -0.3 183445 -0848 27 S 70 0.5 W41 23.6 -0.3 18340 -0.005 30×15 C? 20? 0.2?									Sgr A East
1.0 -0.1 1748 30 -2809 8 S 15 0.6? 1.4 -0.1 1749 39 -2746 10 S 2? ? 1.9 +0.3 1748 45 -2710 1.2 S 0.6 0.7 3.7 -0.2 1755 26 -2550 14 × 11 S 2.3 0.65 3.8 +0.3 1752 55 -2528 18 S? 4? ? 4.2 -3.5 1808 55 -2703 28 S 3.2? 0.6? 4.5 +6.8 1730 42 -2129 3 S 19 0.64 Kepler, SN1604, 3C358 5.2 -2.6 18 07 30 -25 45 18 S 2.6? 0.6? 5.4 -1.2 18 02 10 -24 54 35 C? 35? 0.2? Milne 56 5.9 +3.1 1747 20 -22 16 20 S 3.3? 0.4? 6.1 +1.2 1754 55 -2305 30 × 26 F 4.0? 0.3? 6.4 +0.1 18 03 0 -23 26 42 C 310 varies W28 6.4 +4.0 1745 10 -21 22 31 S 1.3? 0.4? 7.0 -0.1 18 10 150 -22 54 15 S 2.5? 0.5? 7.7 -3.7 18 1725 -2404 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 6 0.5 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 1211 -18 37 77 ? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? ? ? ? 13.5 +0.2 18 14 14 -17 12 5 × 4 S 3.5? 0.7 13.3 -1.3 18 18 20 -16 04 30 × 24? ? ? ? 15.7 +0.1 18 23 50 -16 11 17 S 2 0.5 16.7 +0.1 18 23 50 -14 20 4 C 3.0 0.6 16.8 -1.1 18 25 0 -14 46 30 × 24? ? ? ? 17.4 -2.3 18 33 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 58 -12 23 17 × 11 S 33 0.4 18.9 -1.1 18 23 58 -12 23 17 × 11 S 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 0.0 81 3 10? ? 87 33 0.5 24.7 -0.6 18 34 40 -070 5 30 × 15 C? 20? 0.2?									
1.4 -0.1 1749 39 -2746 10 S 2? ? 1.9 +0.3 1748 45 -2710 1.2 S 0.6 0.7 3.7 -0.2 1755 26 -2550 14 × 11 S 2.3 0.65 3.8 +0.3 1752 55 -2528 18 S 24 ? 4.2 -3.5 18 08 55 -2703 28 S 3.2? 0.6? 4.5 +6.8 1730 42 -21 29 3 S 19 0.64 Kepler, SN1604, 3C358 5.2 -2.6 18 07 30 -25 45 18 S 2.6? 0.6? 5.4 -1.2 18 02 10 -24 54 35 C? 35? 0.2? Milne 56 5.9 +3.1 1747 20 -22 16 20 S 3.3? 0.4? 6.1 +1.2 1754 55 -23 05 30 × 26 F 4.0? 0.3? 6.4 -0.1 18 00 30 -23 26 42 C 310 varies W28 6.4 +4.0 1745 10 -21 22 31 S 1.3? 0.4? 7.0 -0.1 18 0150 -22 54 15 S 2.5? 0.5? 7.7 -3.7 18 17 25 -24 04 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 10.0 -0.3 18 08 39 -20 25 8? ? 2.9 0.8 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 6 0.5 12.0 -0.1 18 12 11 -18 37 7? ? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? ? 13.5 0.7 13.3 -1.3 18 18 52 -15 02 7 × 5 S? 5 0.6? 16.5 -2.7 18 28 50 -16 11 17 S 2 0.5 16.8 -1.1 18 25 25 -14 46 30 × 24 S 5.5? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 33 33 -10 35 4 C 6? 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.5 -0.9 18 33 33 -10 35 6 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.6 18 34 40 -07 05 30 ×15 C? 20? 0.2?									
1.9 +0.3 17 48 45 -27 10 1.2 S 0.6 0.7 3.7 -0.2 17 55 26 -25 50 14 × 11 S 2.3 0.65 3.8 +0.3 17 52 55 -25 28 18 S? 47 ? 42 -3.5 18 08 55 -27 03 28 S 3.2? 0.67 4.5 +6.8 17 30 42 -21 29 3 S 19 0.64 Kepler, SN1604, 3C358 5.2 -2.6 18 07 30 -25 45 18 S C? 357 0.27 Milne 56 5.4 -1.2 18 02 10 -24 54 35 C? 357 0.27 Milne 56 5.9 +3.1 17 47 20 -22 16 20 S 3.3? 0.42 6.1 +1.2 17 54 55 -23 05 30 × 26 F 4.0? 0.3? 6.4 +0.0 17 45 10 -21 22 31 S 1.3? 0.42 7.0 -0.1 18 01 50 -22 54 15 S 2.5? 0.57 7.7 -3.7 18 17 25 -24 04 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 S 87 6 0.5 12.0 -0.1 18 12 11 -18 37 7? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? 7 7 2.9 0.8 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 S 87 6 0.5 12.0 -0.1 18 12 11 -18 37 7? 7 3.5 0.7 13.3 -1.3 18 18 92 0 -18 00 70 × 40 S? 7 7 2.9 0.8 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 S 87 6 0.5 12.0 -0.1 18 12 11 -18 37 7? 7 3.5 0.7 13.3 -1.3 18 18 92 0 -18 00 70 × 40 S? 7 7 2.9 0.8 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 S 87 6 0.5 12.0 -0.1 18 12 11 -18 37 7? 7 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? 7 7 2.9 0.8 11.2 -0.3 18 11.2 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 S 87 6 0.5 12.0 -0.1 18 12 11 -18 37 7? 7 3.5 0.7 13.5 +0.2 18 14 14 -17 12 5 × 4 S 5.5? 0.87 15.5 +0.2 18 14 52 -15 02 7 × 5 S? 5 0.6? 16.2 -2.7 18 28 50 -16 11 17 S 2 0.5 18 18 52 0 -14 40 30 × 24 7 7 2 7 7 7 7 7 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2 0.5 18 28 50 -16 11 17 S 2									
3.7 -0.2 17 55 26 -25 50 14 × 11 S 2.3 0.65 3.8 +0.3 17 52 55 -25 28 18 S? 4? ? 4.2 -3.5 18 08 55 -27 03 28 S 3.2? 0.6? 4.5 +6.8 17 30 42 -21 29 3 S 19 0.64 Kepler, SN1604, 3C358 5.2 -2.6 18 07 30 -25 45 18 S 2.6? 0.6? 5.4 -1.2 18 02 10 -24 54 35 C? 35? 0.2? Milne 56 5.9 +3.1 17 47 20 -22 16 20 S 3.3? 0.42 6.1 +1.2 17 54 55 -23 05 30 × 26 F 4.0? 0.3? 6.4 -0.1 18 00 30 -23 26 42 C 310 varies W28 6.4 +4.0 17 45 10 -21 22 31 S 1.3? 0.4? 7.0 -0.1 18 01 50 -22 54 15 S 2.5? 0.5? 7.7 -3.7 18 17 25 -24 04 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 6 0.5 12.0 -0.1 18 12 11 -18 37 7? ? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? ? ? 13.5 +0.2 18 14 14 -17 12 5 × 4 S 3.5? 1.0? 15.1 -1.6 18 24 00 -16 34 30 × 24 S 5.5? 0.8? 15.9 +0.2 18 18 52 -15 02 7 × 5 S? 5 0.6? 16.8 -1.1 18 25 20 -14 46 30 × 24? ? 2? ? ? 17.4 -2.3 18 30 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 58 -12 23 17 × 11 S 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 3 -0 31 5 C? 37 Varies 24.7 -0.6 18 34 45 -07 05 30 × 15 C? 20? 0.2?	1.4	-0.1	17 49 39	$-27 \ 46$	10	S	2?	?	
3.8 +0.3 17 52 55 -25 28 18 S? 4? ? 4.2 -3.5 18 08 55 -27 03 28 S 3.2? 0.6? 4.5 +6.8 17 30 42 -21 29 3 S 19 0.64 Kepler, SN1604, 3C358 5.2 -2.6 18 07 30 -25 45 18 S 2.6? 0.6? 5.4 -1.2 18 02 10 -24 54 35 C? 35? 0.2? Milne 56 5.9 +3.1 17 47 20 -22 16 20 S 3.3? 0.4? 6.1 +1.2 17 54 55 -23 05 30 × 26 F 4.0? 0.3? 6.4 -0.1 18 00 30 -23 26 42 C 310 varies W28 6.4 +4.0 17 45 10 -21 22 31 S 1.3? 0.4? 7.0 -0.1 18 01 50 -22 54 15 S 2.5? 0.5? 7.7 -3.7 18 17 25 -24 04 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 10.0 -0.3 18 08 39 -20 25 8? 2.9 0.8 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 6 0.5 12.0 -0.1 18 12 11 -18 37 7? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? ? 15.9 +0.2 18 14 14 -17 12 5 × 4 S 3.5? 0.7 13.5 +0.2 18 14 14 -17 12 5 × 4 S 3.5? 0.7 15.1 -1.6 18 24 00 -16 34 30 × 24 S 5.5? 0.6? 16.2 -2.7 18 28 50 -16 11 17 S 2 0.5 16.7 +0.1 18 20 56 -14 20 4 C 3.0 0.6 16.8 -1.1 18 25 50 -14 46 30 × 24? ? 2? ? 17.4 -2.3 18 30 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 46 30 × 24? ? 2? ? 17.4 -2.3 18 30 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 58 -12 23 17 × 11 S 33 0.4 Kes 67 18.9 -1.1 18 20 56 -14 20 4 C 3.0 0.6 16.8 -1.1 18 25 50 -14 46 30 × 24? ? 2? ? 17.4 -2.3 18 30 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 58 -12 32 17 × 11 S 33 0.4 Kes 67									
4.2									
4.5 +6.8									
5.2 - 2.6									
5.4 -1.2 18 02 10 -24 54 35 C? 35? 0.2? Milne 56 5.9 +3.1 17 47 20 -22 16 20 S 3.3? 0.4? 6.1 +1.2 17 54 55 -23 05 30 × 26 F 4.0? 0.3? 6.4 -0.1 18 00 30 -23 26 42 C 310 varies W28 6.4 +4.0 17 45 10 -21 22 31 S 1.3? 0.4? 7.0 -0.1 18 01 50 -22 54 15 S 2.5? 0.5? 7.7 -3.7 18 17 25 -24 04 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 10.0 -0.3 18 08 39 -20 25 8? ? 2.9 0.8 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 6 0.5 12.0 -0.1 18 12 11 -18 37 7? ? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? ? ? 13.5 +0.2 18 14 14 -17 12 5 × 4 S 3.5? 1.0? 15.1 -1.6 18 24 00 -16 34 30 × 24 S 5.5? 0.8? 15.9 +0.2 18 18 52 -15 02 7 × 5 S? 5 0.6? 16.2 -2.7 18 28 50 -16 11 17 S 2 0.5 16.7 +0.1 18 20 56 -14 20 4 C 3.0 0.6 16.8 -1.1 18 25 50 -14 40 30 × 24? ? 2? ? 17.4 -2.3 18 30 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 58 -12 23 17 × 11 S 33 0.4 Kes 67 18.9 -1.1 18 29 50 -12 58 33 C? 37 varies 20.0 -0.2 18 28 07 -11 35 10 F 10 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 32 45 -10 08 20 S 69 0.5 Kes 69 22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 34 30 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 40 -07 05 30 × 15 C? 20? 0.2?	4.5	+6.8	17 30 42	-21 29	3	S	19	0.64	Kepler, SN1604, 3C358
5.9 +3.1									
6.1 +1.2 17 54 55 -23 05 30 × 26 F 4.0? 0.3? 6.4 -0.1 18 00 30 -23 26 42 C 310 varies W28 6.4 +4.0 17 45 10 -21 22 31 S 1.3? 0.4? 7.0 -0.1 18 01 50 -22 54 15 S 2.5? 0.5? 7.7 -3.7 18 17 25 -24 04 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 (W30) 9.8 +0.6 18 07 08 -20 14 12 S 3.9 0.5 (W30) 9.8 +0.6 18 07 08 -20 15 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 0.5 (0.5) 10.0 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 0.5 (0.5) 12.0 -0.1 18 12 11 -18 37 7? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? ? ? ? 1.0? 15.1 -1.6 18 24 00 -16 34 30 × 24 S 5.5? 0.8? 15.9 +0.2 18 18 52 -15 02 7 × 5 S? 5 0.6? 16.2 -2.7 18 28 50 -16 11 17 S 2 0.5 16.7 +0.1 18 20 56 -14 20 4 C 3.0 0.6 16.8 -1.1 18 25 20 -14 46 30 × 24? ? 2? ? 17.4 -2.3 18 30 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 58 -12 23 17 × 11 S 33 0.4 Kes 67 18.9 -1.1 18 29 50 -12 58 33 C? 37 varies 20.0 -0.2 18 28 07 -11 35 10 F 10 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 32 45 -10 08 20 S 69 0.5 Kes 69 22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -0.8 48 27 S 70 0.5 W41 23.6 +0.3 18 33 0.7 0.7 15 C? 20? 0.2?									Milne 56
6.4 -0.1 18 00 30 -23 26 42 C 310 varies W28 6.4 +4.0 17 45 10 -21 22 31 S 1.3? 0.4? 7.0 -0.1 18 01 50 -22 54 15 S 2.5? 0.5? 7.7 -3.7 18 17 25 -24 04 22 S 11 0.32 1814-24 8.7 -5.0 18 24 10 -23 48 26 S 4.4 0.3 8.7 -0.1 18 05 30 -21 26 45 S? 80 0.5 (W30) 9.8 +0.6 18 05 08 -20 14 12 S 3.9 0.5 10.0 -0.3 18 08 39 -20 25 8? ? 2.9 0.8 11.2 -0.3 18 11 27 -19 25 4 C 22 0.49 11.4 -0.1 18 10 47 -19 05 8 S? 6 0.5 12.0 -0.1 18 12 11 -18 37 7? ? 3.5 0.7 13.3 -1.3 18 19 20 -18 00 70 × 40 S? ? ? 13.5 +0.2 18 14 14 -17 12 5 × 4 S 3.5? 1.0? 15.1 -1.6 18 24 00 -16 34 30 × 24 S 5.5? 0.6? 16.2 -2.7 18 28 50 -16 11 17 S 2 0.5 16.7 +0.1 18 20 56 -14 20 4 C 3.0 0.6 16.8 -1.1 18 25 20 -14 46 30 × 24? ? 2? ? 17.4 -2.3 18 30 55 -14 52 24? S 4.8? 0.8? 17.8 -2.6 18 32 50 -14 39 24 S 4.0? 0.3? 18.8 +0.3 18 23 58 -12 23 17 × 11 S 33 0.4 Kes 67 18.9 -1.1 18 29 50 -12 58 33 C? 37 varies 20.0 -0.2 18 28 07 -11 35 10 F 10 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 32 45 -10 08 20 S 69 0.5 Kes 69 22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?									
$\begin{array}{c} 6.4 & +4.0 & 174510 & -2122 & 31 & S & 1.3? & 0.4? \\ 7.0 & -0.1 & 180150 & -2254 & 15 & S & 2.5? & 0.5? \\ 7.7 & -3.7 & 181725 & -2404 & 22 & S & 11 & 0.32 & 1814-24 \\ 8.7 & -5.0 & 182410 & -2348 & 26 & S & 4.4 & 0.3 \\ 8.7 & -0.1 & 180530 & -2126 & 45 & S? & 80 & 0.5 & (W30) \\ \hline 9.8 & +0.6 & 180598 & -2014 & 12 & S & 3.9 & 0.5 \\ 10.0 & -0.3 & 180839 & -2025 & 8? & ? & 2.9 & 0.8 \\ 11.2 & -0.3 & 181127 & -1925 & 4 & C & 22 & 0.49 \\ 11.4 & -0.1 & 181047 & -1905 & 8 & S? & 6 & 0.5 \\ 12.0 & -0.1 & 181211 & -1837 & 7? & ? & 3.5 & 0.7 \\ \hline 13.3 & -1.3 & 181920 & -1800 & 70 \times 40 & S? & ? & ? \\ 13.5 & +0.2 & 181414 & -1712 & 5 \times 4 & S & 3.5? & 1.0? \\ 15.1 & -1.6 & 182400 & -1634 & 30 \times 24 & S & 5.5? & 0.8? \\ 15.9 & +0.2 & 181852 & -1502 & 7 \times 5 & S? & 5 & 0.6? \\ 16.2 & -2.7 & 182850 & -1611 & 17 & S & 2 & 0.5 \\ \hline 16.7 & +0.1 & 182056 & -1420 & 4 & C & 3.0 & 0.6 \\ 16.8 & -1.1 & 182520 & -1446 & 30 \times 24? & ? & 2? & ? \\ 17.4 & -2.3 & 183055 & -1452 & 24? & S & 4.8? & 0.8? \\ 17.8 & -2.6 & 183250 & -1439 & 24 & S & 4.0? & 0.3? \\ 18.8 & +0.3 & 182358 & -1223 & 17 \times 11 & S & 33 & 0.4 & Kes67 \\ \hline 18.9 & -1.1 & 182950 & -1258 & 33 & C? & 37 & varies \\ 20.0 & -0.2 & 182807 & -1135 & 10 & F & 10 & 0.0 \\ 21.5 & -0.9 & 183333 & -1035 & 4 & C & 6? & 0.0 \\ 21.8 & -0.6 & 183245 & -1008 & 20 & S & 69 & 0.5 & Kes69 \\ 22.7 & -0.2 & 183315 & -0913 & 26 & S? & 33 & 0.6 \\ \hline 23.3 & -0.3 & 183445 & -0848 & 27 & S & 70 & 0.5 & W41 \\ 23.6 & +0.3 & 183303 & -0813 & 10? & ? & 8? & 0.5 \\ 24.7 & -0.6 & 183440 & -0705 & 30 \times 15 & C? & 20? & 0.2? \\ \hline \end{array}$									
7.0 -0.1	6.4	-0.1	18 00 30	$-23\ 26$	42	С	310	varies	W28
7.7 - 3.7	6.4	+4.0	17 45 10	-21 22	31				
8.7 -5.0	7.0	-0.1	18 01 50	-2254			2.5?	0.5?	
8.7 -0.1	7.7	-3.7	18 17 25	-2404			11		1814-24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.7	-5.0	18 24 10	-2348			4.4		
10.0 -0.3	8.7	-0.1	18 05 30	$-21\ 26$	45	S?	80	0.5	(W30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.8	+0.6	18 05 08	-20 14			3.9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0	-0.3	18 08 39	-2025	8?	?	2.9	0.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.2	-0.3	18 11 27	-1925			22	0.49	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.4	-0.1	18 10 47	-1905	8		6	0.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.0	-0.1	18 12 11	-1837	7?	?	3.5	0.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.3	-1.3	18 19 20	$-18\ 00$	70×40	S?	?	?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.5	+0.2	18 14 14	$-17\ 12$	5×4	S	3.5?	1.0?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.1	-1.6	18 24 00	-1634	30×24		5.5?	0.8?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			18 18 52	-1502	7×5	S?	5	0.6?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.2	-2.7	18 28 50	-16 11	17	S	2	0.5	
17.4 -2.3						C			
17.8 -2.6 18 32 50 -14 39 24									
18.8 +0.3 18 23 58 -12 23 17 × 11 S 33 0.4 Kes 67 18.9 -1.1 18 29 50 -12 58 33 C? 37 varies 20.0 -0.2 18 28 07 -11 35 10 F 10 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 32 45 -10 08 20 S 69 0.5 Kes 69 22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?	17.4	-2.3			24?	S		0.8?	
18.9 -1.1 18 29 50 -12 58 33 C? 37 varies 20.0 -0.2 18 28 07 -11 35 10 F 10 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 32 45 -10 08 20 S 69 0.5 Kes 69 22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 0.3 -0.8 15? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?									
20.0 -0.2 18 28 07 -11 35 10 F 10 0.0 21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 32 45 -10 08 20 S 69 0.5 Kes 69 22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?	18.8	+0.3	18 23 58	-1223	17×11	S	33	0.4	Kes 67
21.5 -0.9 18 33 33 -10 35 4 C 6? 0.0 21.8 -0.6 18 32 45 -10 08 20 S 69 0.5 Kes 69 22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?	18.9	-1.1	18 29 50	-12 58	33	C?	37	varies	
21.8 -0.6	20.0	-0.2	18 28 07	-1135	10	F	10	0.0	
22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?	21.5	-0.9	18 33 33	-1035	4	C	6?	0.0	
22.7 -0.2 18 33 15 -09 13 26 S? 33 0.6 23.3 -0.3 18 34 45 -08 48 27 S 70 0.5 W41 23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?	21.8	-0.6	18 32 45	-1008	20	S	69	0.5	Kes 69
23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?	22.7	-0.2			26	S?	33	0.6	
23.6 +0.3 18 33 03 -08 13 10? ? 8? 0.3 24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?	23.3	-0.3	18 34 45	-08 48	27	S	70	0.5	W41
24.7 -0.6 18 38 43 -07 32 15? S? 8 0.5 24.7 +0.6 18 34 10 -07 05 30 × 15 C? 20? 0.2?					10?				
$24.7 + 0.6 183410 - 0705 30 \times 15 C? 20? 0.2?$						S?			
27.4 +0.0 18.41.10 04.56 4 \$ 6 0.69 4C 04.71	24.7	+0.6	18 34 10	-07~05	30×15	C?	20?	0.2?	
27.4 +0.0 18 41 19 -04 56 4 S 6 0.68 4C-04.71	27.4	+0.0	18 41 19	-0456	4	S	6	0.68	4C-04.71

l	b	RA (J2000) ()) Dec	size	type	Flux at	spectral	other
ι	υ	`	,		type			
		(h m s)	(° ′)	/arcmin		1 GHz/Jy	index	name(s)
27.8	+0.6	18 39 50	_04.24	50 × 30	F	30	varies	
28.8		18 39 00		100?	S?	?	0.4?	
29.6		18 44 52		5	S	1.5?	0.5?	
29.7	-0.3	18 46 25	-0259	3	C	10	0.7	Kes 75
30.7	-2.0	18 54 25	-0254	16	?	0.5?	0.7?	
30.7	+1.0	18 44 00	-0132	24×18	S?	6	0.4	
	-0.6	18 51 10		18?	S?	2?	?	
	+0.0	18 49 25		7×5	S.	24	0.55	3C391
	-4.9	19 06 00		60?	S?	22?	0.5?	3C396.1
32.1	-0.9	18 53 10	$-01\ 08$	40?	C?	?	?	
			0.5 -	4 =	e -			
	-0.1	18 51 25		17	S?	11?	0.2?	Kes 78
33.2	-0.6	18 53 50	$-00\ 02$	18	S	3.5	varies	
33.6	+0.1	18 52 48	+00 41	10	S	22	0.5	Kes 79, 4C00.70, HC13
	-0.4	18 56 00		35×27	Č	230	0.30	W44, 3C392
	-0.7	19 00 35		25?	S?	?	?	,
50.0	-0.7	19 00 33	+0∠ 50	43:	D:	<u> </u>	•	
36.6	+2.6	18 48 49	±04.26	17 × 13?	S	0.7?	0.5?	
								2020 C HC24 ND 40 502
	-0.3	19 04 08		8×6	S	18	0.6	3C396, HC24, NRAO 593
	-2.0	19 12 20		120×60	?	85?	0.7?	W50, SS433
40.5	-0.5	19 07 10	+06 31	22	S	11	0.5	
41.1	-0.3	19 07 34	+07 08	4.5×2.5	S	22	0.48	3C397
42.8	+0.6	19 07 20	+09 05	24	S	3?	0.5?	
	-0.2	19 11 08		4×3	S	38	0.48	W49B
	+1.6	19 05 50		60?	S?	8.6?	0.2?	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-0.4	19 16 25		22	S	4.2?	0.4?	~~~~
46.8	-0.3	19 18 10	+12 09	17×13	S	14	0.5	(HC30)
				• 0	~~			
	-0.7	19 23 50		30	S?	160?	0.3?	(W51)
53.6	-2.2	19 38 50	+17 14	33×28	S	8	0.75	3C400.2, NRAO 611
54.1	+0.3	19 30 31	+1852	1.5	F?	0.5	0.1	
	-0.3	19 33 20		40	S	28	0.5	(HC40)
	+0.3			20×15 ?	S	0.5?	0.5?	(110.10)
55.0	1.0.3	17 34 00	119 30	20 A 13!	b	0.54	0.54	
55 7	+3.4	19 21 20	⊥21 44	23	S	1.4	0.6	
								(4021.52)
57.2		19 34 59		12?	S?	1.8?	?	(4C21.53)
	+0.1	19 42 33		5	S	3?	?	
59.8	+1.2	19 38 55	+24 19	20×16 ?	?	1.6	0.5	
63.7	+1.1	19 47 52	+27 45	8	F	1.8	0.3	
65.1	+0.6	19 54 40	+28 35	90×50	S	6	0.6	
65.3				310×240	S?	52?	0.6?	
65.7		19 52 10		18	?	5.1	0.6	DA 495
								DA 1 33
	+1.8	19 54 32		9	S	1.4	0.3	
68.6	-1.2	20 08 40	+30 37	28×25 ?	?	0.7?	0.0?	
	_				_			GETT 0.0
	+2.7	19 53 20		80?	?	120?	varies	CTB 80
69.7	+1.0	20 02 40	+32 43	16	S	1.6	0.8	
73.9	+0.9	20 14 15		22?	S?	9?	0.3?	
	-8.5			230 × 160	S	210	varies	Cygnus Loop
	+1.2	20 16 02		8 × 6	F	9	varies	CTB 87
74.9	+1.∠	20 10 02	+31 12	0 × U	1,	J	varies	CID 0/

l	b	RA (J2000 (h m s)		size /arcmin	type	Flux at 1 GHz/Jy	spectral index	other name(s)
76.9	+1.0	20 22 20	+38 43	12 × 9	?	2	0.6	
78.2	+2.1	20 20 50	+40 26	60	S	340	0.5	DR4, γ Cygni
82.2	+5.3	20 19 00	+45 30	95×65	S	120?	0.5?	W63
84.2	-0.8	20 53 20	+43 27	20×16	S	11	0.5	
84.9	+0.5	20 50 30	+44 53	6	S	0.8	0.4	
	+4.7	20 45 00		120 × 90	S	220	0.40	HB21
	+6.9	20 52 25		27×20	S	9	0.54	DA 530, 4C(T)55.38.1
	-0.2	21 29 20		80	S	65	0.3	CTB 104A, DA 551
	+1.0	21 24 50		30×25	S	15	0.44	3C434.1
109.1	-1.0	23 01 35	+58 53	28	S	20	0.50	CTB 109
	-2.1	23 23 26		5	S	2720	0.77	Cassiopeia A, 3C461
112.0		23 15 55		30?	S?	7?	0.6?	
114.3		23 37 00		90×55	S	6?	0.3?	
116.5		23 53 40		80×60	S	11?	0.8?	
116.9	+0.2	23 59 10	+62 26	34	S	9?	0.5?	CTB 1
	+5.0	23 54 20		80 × 60?	S?	30?	0.5?	
	+10.2	00 06 40		90?	S	36	0.6	CTA 1
	+1.4	00 25 18		8	S	56	0.61	Tycho, 3C10, SN1572
126.2		01 22 00		70	S?	7	varies	
127.1	+0.5	01 28 20	+63 10	45	S	13	0.6	R5
	+3.1	02 05 41		9×5	F	33	0.10	3C58, SN1181
	+1.3	02 17 40		80	S	45	0.6	HB3
	-1.2	04 09 40		110?	S?	16?	0.7?	
	+5.7	04 58 40		110	S	5	0.5	
160.9	+2.6	05 01 00	+46 40	140 × 120	S	110	0.6	HB9
	+4.3	05 26 30		55 × 35	S	7?	0.4?	VRO 42.05.01
166.2		05 19 00		90×70	S	11	0.5	OA 184
179.0	+2.6	05 53 40		70	S?	7	0.4	
	-1.7	05 39 00		180	S	65	varies	S147
182.4	+4.3	06 08 10	+29 00	50	S	1.2	0.4	
	-5.8	05 34 31		7×5	F	1040	0.30	Crab Nebula, 3C144, SN1054
189.1		06 17 00		45	S	160	0.36	IC443, 3C157
	-1.1	06 09 20		78	S	20?	0.6?	PKS 0607+17
205.5		06 39 00		220	S	160	0.5	Monoceros Nebula
206.9	+2.3	06 48 40	+06 26	60×40	S?	6	0.5	PKS 0646+06
	-1.1	06 45 40		70?	S?	15?	0.5?	
260.4	-3.4	08 22 10	-43~00	60×50	S	130	0.5	Puppis A, MSH 08–44
	+5.5	09 04 20		40×30	S	10?	0.4?	
	-3.3	08 34 00		255	C	1750	varies	Vela (XYZ)
266.2	-1.2	08 52 00	-46 20	120	S	50?	0.3?	
	-3.2	09 06 50		15?	S?	0.4	0.6	
	+1.1	09 57 40		95	S	30?	0.6?	
	-1.8	10 18 15		24?	S	11?	0.3?	MSH 10-53
	-1.2	10 35 40		26×6	S?	1.4?	?	
289.7	-0.3	11 01 15	$-60\ 18$	18×14	S	6.2	0.2?	

l	b	RA (J2000.0) Dec (h m s) (° ')	size /arcmin	type	Flux at 1 GHz/Jy	spectral index	other name(s)
290.1		11 03 05 -60 56	19 × 14	S	42	0.4	MSH 11-61A
291.0		$11\ 11\ 54\ -60\ 38$	15×13	C	16	0.29	(MSH 11-62)
	+1.8	11 24 36 -59 16	12×8	C?	15	0.4	MSH 11-54
	+0.6	11 35 00 -60 54	20	C	5?	0.6?	
294.1	-0.0	11 36 10 -61 38	40	S	>2?	?	
296.1		11 51 10 -62 34	37×25	S	8?	0.6?	DVC 1200 - 51/52
296.5 +		12 09 40 -52 25	90×65	S	48	0.5	PKS 1209-51/52
296.8		11 58 30 -62 35 12 12 40 -62 52	20×14 5?	S ?	9 5?	0.6 0.4?	1156–62
298.5 - 298.6 -		12 12 40 -62 32 12 13 41 -62 37	12×9	S	5?	0.47	
298.0	-0.0						
299.2		$12\ 15\ 13\ -65\ 30$	18×11	S	0.5?	?	
299.6		12 21 45 -63 09	13	S	1.0?	?	
301.4		12 37 55 -63 49	37×23	S	2.1?	?	
302.3		$12\ 45\ 55\ -62\ 08$	17	S	5?	0.4?	** 45
304.6	+0.1	13 05 59 -62 42	8	S	14	0.5	Kes 17
308.1	-0.7	13 37 37 -63 04	13	S	1.2?	?	
308.8	-0.1	$13\ 42\ 30\ -62\ 23$	30×20 ?	C?	15?	0.4?	
309.2	-0.6	$13\ 46\ 31\ -62\ 54$	15×12	S	7?	0.4?	
309.8	+0.0	$13\ 50\ 30\ -62\ 05$	25×19	S	17	0.5	
310.6	-0.3	13 58 00 -62 09	8	S	5?	?	Kes 20B
310.8	-0.4	14 00 00 -62 17	12	S	6?	?	Kes 20A
311.5		$14\ 05\ 38\ -61\ 58$	5	S	3?	0.5	
312.4		$14\ 13\ 00\ -61\ 44$	38	S	45	0.36	
315.4		$14\ 43\ 00\ -62\ 30$	42	S	49	0.6	RCW 86, MSH 14-63
315.4	-0.3	14 35 55 -60 36	24×13	?	8	0.4	
315.9		14 38 25 -60 11	25×14	S	0.8?	?	
316.3	-0.0	$14\ 41\ 30\ -60\ 00$	29×14	S	20?	0.4	(MSH 14-57)
317.3	-0.2	$14\ 49\ 40\ -59\ 46$	11	S	4.7?	?	
318.2		$14\ 54\ 50\ -59\ 04$	40×35	S	>3.9?	?	
318.9	+0.4	14 58 30 -58 29	30×14	C	4?	0.2?	
320.4		15 14 30 -59 08	35	C	60?	0.4	MSH 15-52, RCW 89
320.6		15 17 50 -59 16	60×30	S	?	?	
321.9		15 23 45 -58 13	28	S	>3.4?	?	
321.9		$15\ 20\ 40\ -57\ 34$	31×23	S	13	0.3	
322.5	-0.1	15 23 23 -57 06	15	C	1.5	0.4	
323.5		$15\ 28\ 42\ -56\ 21$	13	S	3?	0.4?	
326.3		15 53 00 -56 10	38	C	145	varies	MSH 15-56
327.1		15 54 25 -55 09	18	C	7?	?	
327.4		15 48 20 -53 49	21	S	30?	0.6	Kes 27
327.4	+1.0	15 46 48 -53 20	14	S	1.9?	?	
327.6 +	-14.6	15 02 50 -41 56	30	S	19	0.6	SN1006, PKS 1459-41
328.4	+0.2	15 55 30 -53 17	6	F	16?	0.2	(MSH 15-57)
329.7	+0.4	$16\ 01\ 20\ -52\ 18$	40×33	S	>34?	?	
330.0 +	-15.0	15 10 00 -40 00	180?	S	350?	0.5?	Lupus Loop
330.2	+1.0	16 01 06 -51 34	11	S?	5?	0.3	

l	b	RA (J2000.0) D (h m s) (°		type	Flux at 1 GHz/Jy	spectral index	other name(s)
332.0		16 13 17 -50	53 12	S	8?	0.5	
332.4	-0.4	$16\ 17\ 33\ -51$	02 10	S	28	0.5	RCW 103
332.4		$16\ 15\ 17\ -50$		S	26	0.5	MSH 16–51, Kes 32
335.2		$16\ 27\ 45\ -48$		S	16	0.5	
336.7	+0.5	16 32 11 -47	19 14 × 10	S	6	0.5	
337.0		16 35 57 −47		S	1.5	0.6?	(CTB 33)
337.2		16 39 28 -47		S	2?	0.7	10
	+1.0	16 32 39 -46		S	16	0.55	Kes 40
337.8		16 39 01 -46		S	18	0.5	Kes 41
338.1	+0.4	16 37 59 -46	24 15?	S	4?	0.4	
338.3		16 41 00 -46		S	7?	?	
338.5		16 41 09 -46		?	12?	?	
		$16\ 46\ 31\ -44$		S	5	0.4	
340.6		$16\ 47\ 41\ -44$		S	5?	0.4?	
341.2	+0.9	16 47 35 -43	$47 16 \times 22$	C?	1.5?	0.6?	
341.9	-0.3	16 55 01 -44	01 7	S	2.5	0.5	
342.0	-0.2	16 54 50 -43		S	3.5?	0.4?	
342.1	+0.9	165043 -43	$04 10 \times 9$	S	0.5?	?	
343.1	-2.3	$17\ 08\ 00\ -44$	16 32?	C?	8?	0.5?	
343.1	-0.7	$17\ 00\ 25\ -43$	$14 27 \times 21$	S	7.8	0.55	
344.7	-0.1	17 03 51 -41	42 10	C?	2.5?	0.5	
345.7	-0.2	$17\ 07\ 20\ -40$	53 6	S	0.6?	?	
346.6	-0.2	$17\ 10\ 19\ -40$	11 8	S	8?	0.5?	
347.3	-0.5	$17\ 13\ 50\ -39$	$45 65 \times 55$	S?	?	?	
348.5	-0.0	17 15 26 -38	28 10?	S?	10?	0.4?	
348.5	+0.1	17 14 06 -38		S	72	0.3	CTB 37A
348.7	+0.3	$17\ 13\ 55\ -38$	11 17?	S	26	0.3	CTB 37B
349.2	-0.1	$17\ 17\ 15\ -38$	$04 9 \times 6$	S	1.4?	?	
	+0.2			S	20	0.5	
350.0	-2.0	$17\ 27\ 50\ -38$	32 45	S	26	0.4	
351.2		17 22 27 -36		C?	5?	0.4	
351.7		$17\ 21\ 00\ -35$		S	10?	?	
351.9		$17\ 28\ 52\ -36$		S	1.8?	?	
352.7		$17\ 27\ 40\ -35$		S	4	0.6	
354.1	+0.1	$17\ 30\ 28\ -33$	$46 15 \times 3?$	C?	?	varies?	
354.8		17 36 00 -33		S	2.8?	?	
355.6		$17\ 35\ 16\ -32$		S	3?	?	
355.9		$17\ 45\ 53\ -33$		S	8	0.5	
356.3		$17\ 37\ 56\ -32$		S	3?	?	
356.3	-1.5	$17\ 42\ 35\ -32$	52 20 × 15	S	3?	?	
357.7	-0.1	17 40 29 -30	58 8 × 3?	?	37	0.4	MSH 17-39
357.7	+0.3	$17\ 38\ 35\ -30$	44 24	S	10	0.4?	
359.0	-0.9	$17\ 46\ 50\ -30$	16 23	S	23	0.5	
359.1	-0.5	17 45 30 -29	57 24	S	14	0.4?	
359.1	+0.9	17 39 36 -29	$11 12 \times 11$	S	5?	?	

Table II Other names for SNRs

γCygni	G78.2 + 2.1	DR4	G78.2 + 2.1	NRAO 593	G39.2 - 0.3
				NRAO 611	G53.6 - 2.2
	G296.8 - 0.3		G132.7 + 1.3		
1814-24	G7.7 - 3.7		G160.9 + 2.6	OA 184	G166.2 + 2.5
		HB21	G89.0 + 4.7		
	G120.1 + 1.4			PKS 0607+17	G192.8 - 1.1
3C58	G130.7 + 3.1	HC13	G33.6 + 0.1	PKS 0646+06	G206.9 + 2.3
3C144	G184.6 - 5.8	HC24	G39.2 - 0.3	PKS 1209-51/52	G296.5 + 10.0
3C157	G189.1 + 3.0	(HC30)	G46.8 - 0.3	PKS 1459-41	G327.6 + 14.6
3C358	G4.5 + 6.8	(HC40)	G54.4 - 0.3		
3C391	G31.9 + 0.0			Puppis A	G260.4 - 3.4
3C392	G34.7 - 0.4	IC443	G189.1 + 3.0		
3C396	G39.2 - 0.3			R5	G127.1 + 0.5
3C396.1	G32.0 - 4.9	Kepler	G4.5 + 6.8		
3C397	G41.1 - 0.3			RCW 86	G315.4 - 2.3
3C400.2	G53.6 - 2.2	Kes 17	G304.6 + 0.1	RCW 89	G320.4 - 1.2
3C434.1	G94.0 + 1.0	Kes 20A	G310.6 - 0.3	RCW 103	G332.4 - 0.4
3C461	G111.7 - 2.1	Kes 20B	G310.8 - 0.4		
		Kes 27	G327.4 + 0.4	S147	G180.0 - 1.7
4C-04.71	G27.4 + 0.0	Kes 32	G332.4 + 0.1		
4C00.70	G33.6 + 0.1	Kes 40	G337.3 + 1.0	SN1006	G327.6 + 14.6
(4C21.53)	G57.2 + 0.8	Kes 41	G337.8 - 0.1	SN1054	G184.6 - 5.8
4C(T)55.38.1		Kes 67	G18.8 + 0.3	SN1181	G130.7 + 3.1
,		Kes 69	G21.8 - 0.6	SN1572	G120.1 + 1.4
CTA 1	G119.5 + 10.2	Kes 75	G29.7 - 0.3	SN1604	G4.5 + 6.8
			G32.8 - 0.1		
CTB 1	G116.9 + 0.2		G33.6 + 0.1	SS433	G39.7 - 2.0
	G337.0 - 0.1				
` ′	G348.5 + 0.1	Lupus Loop	G330.0 + 15.0	Sgr A East	G0.0 + 0.0
	G348.7 + 0.3				
	G69.0 + 2.7	MSH 08-44	G260.4 - 3.4	Tycho	G120.1 + 1.4
	G74.9 + 1.2		G284.3 - 1.8	1,0110	012011 / 171
	G93.7 - 0.2		G292.0 + 1.8	Vela (XYZ)	G263.9 - 3.3
	G109.1 - 1.0	MSH 11–6 <i>1</i> A		veia (1112)	0203.9
CIB 107	3107.1 1.0	(MSH 11–62)		VRO 42.05.01	$G166.0 \pm 4.3$
Cassioneia A	G111.7 - 2.1		G316.3 - 0.0	VICO 12.03.01	G100.0 1 1.5
Cussiopeia 71	G111.7 2.1		G315.4 - 2.3	W28	G6.4 - 0.1
Crah Nebula	G184.6 - 5.8		G319.4 - 2.3 $G320.4 - 1.2$		G8.7 - 0.1
Clab Nebula	0104.0 - 3.0		G326.3 - 1.8		G3.7 - 0.1 G23.3 - 0.3
Cygnus Loop	C74.0 9.5	(MSH 15-57)			G23.3 - 0.3 G34.7 - 0.4
Cygnus Loop	G/4.0 - 8.3	` ′			G34.7 - 0.4 G43.3 - 0.2
DA 405	C65.7 + 1.2		G332.4 + 0.1		
	G65.7 + 1.2	wish 17–39	G357.7 - 0.1		G39.7 - 2.0
	G93.3 + 6.9	M:1 57	C5 4 1 2		G49.2 - 0.7
DA 331	G93.7 - 0.2	willing 36	G5.4 - 1.2	W 63	G82.2 + 5.3

Monoceros Nebula G205.5 + 0.5

Journals

A&A Astronomy & Astrophysics

A&AS Astronomy & Astrophysics Supplement

AJ Astronomical Journal ApJ Astrophysical Journal

ApJS Astrophysical Journal Supplement

AstL Astronomy Letters

ARep Astronomy Reports (Astronomicheskii Zhurnal translation)

AuJPh Australian Journal of Physics

AuJPA Australian Journal of Physics Astrophysical Supplement

JApA Journal of Astrophysics & Astronomy

JRASC Journal of the Royal Astronomical Society of Canada MNRAS Monthly Notices of the Royal Astronomical Society

Natur Nature

PASAu Proceedings of the Astronomical Society of Australia PASJ Publications of the Astronomical Society of Japan PASP Publications of the Astronomical Society of the Pacific RMxAA Review of Mexican Astronomy & Astrophysics

Sci Science

SvA Soviet Astronomy SvAL Soviet Astronomy Letters

Proceedings

SNRISM is *Supernova Remnants and the Interstellar Medium*, (IAU Colloquium 101), eds Roger, R.S. & Landecker, T.L., (Cambridge University Press), 1988.

Radio Telescopes

5km Cambridge 5-km Telescope

6C Cambridge low frequency northern survey ATCA Australia Telescope Compact Array

CLFST Cambridge Low Frequency Synthesis Telescope
DRAO Dominion Radio Astrophysical Observatory

FIRST Fleurs Synthesis Telescope HMT Cambridge Half-Mile Telescope

MOST Molonglo Observatory Synthesis Telescope NRAO National Radio Astronomy Observatory

NRO Nobeyama Radio Observatory
OMT Cambridge One-Mile Telescope
OSRT Ooty Synthesis Radio Telescope
TPT Clark Lake TPT telescope

VLA Very Large Array

VRO Vermillion River Observatory

WSRT Westerbork Synthesis Radio Telescope

Satellites

HST Hubble Space Telescope ISO Infrared Space Observatory

X-ray:

EXOSAT European X-ray Observatory Satellite

ROSAT Röntgensatellit

ASCA Advanced Satellite for Cosmology and Astrophysics

On board Einstein (HEAO-2):

HRI High Resolution Imager
IPC Imaging Proportional Counter