Simulating Atmospheric Phase Errors, Phase Correction and the Impact on ALMA Science

B. Nikolic1
J. S. Richer1 R. E. Hills2

1Cavendish Laboratory, University of Cambridge
2Joint ALMA Office, Santiago, Chile

10th September 2008, IRAM, Grenoble
1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
Outline

1 Introduction

2 Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3 Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4 Summary/Links
Atmospheric Phase errors

Observed path fluctuation at the SMA while tracking a quasar for one hour
($\sigma_p = 207 \, \mu m$)
Atmospheric Phase errors vs baseline

Phase fluctuation measured at 22 GHz at the VLA by observing a quasar for about thirty minutes. Correlations along one arm of the VLA only shown.
Why Simulate Phase Errors?

ALMA phase correction/calibration/mitigation strategies

- Fast switching
- 183 GHz Water Vapour Radiometry
- Self-calibration
- Scheduling
Why Simulate Phase Errors?

ALMA phase correction/calibration/mitigation strategies

- Fast switching
- 183 GHz Water Vapour Radiometry
- Self-calibration
- Scheduling

The science end-user:
Interested only in residual phase errors after calibration/correction
Why Simulate Phase Errors?

ALMA phase correction/calibration/mitigation strategies

- Fast switching
- 183 GHz Water Vapour Radiometry
- Self-calibration
- Scheduling

The science end-user:
Interested only in residual phase errors after calibration/correction

Algorithm design, scheduling, hardware design:
Need to understand the phase errors in detail, and how each of the correction techniques can be used to its best potential
Outline

1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
Outline

1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
Simulation Flowchart

Start

Generate uv tracks, samples

Calculate visibilities

Corrupt visibility phases

Simulate phase correction

Make and analyse image

Stop

Geometry only, use CASA

Trivial for point sources

Use custom C++ and Python

Use custom Python

CASA or Obit
Simulations Framework

- A very straightforward flowchart!
- Factors cleanly into distinct steps
- The FITS format ties all of these steps together very well
- Not considering thermal noise at any stage

- Develop own modules separately:
 - Minimise dependencies
 - Maximise re-usability for other projects
 - Everything driven from Python (using SWIG when necessary)

- Can be incorporated into user-orientated simulators or used for algorithm development
Simulations Framework

- A very straightforward flowchart!
- Factors cleanly into distinct steps
- The **FITS** format ties all of these steps together very well
- Not considering thermal noise at any stage
 - Not required for our goals, so keeping it simple
- Develop own modules separately:
 - Minimise dependencies
 - Maximise re-usability for other projects
 - Everything driven from **Python** (using SWIG when necessary)
- Can be incorporated into user-orientated simulators or used for algorithm development
Outline

1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
The method and Kolmogorov hypothesis

- Assume a frozen atmospheric *volume* translated across the array.
The method and Kolmogorov hypothesis

- Assume a frozen atmospheric *volume* translated across the array
- Wind-speed 10–15 m s\(^{-1}\)
- Kolmogorov turbulence:

\[
\langle [q(r') - q(r' + r)]^2 \rangle = D_q(|r|) = D_q(r) = 6.88 \left(\frac{r}{r_0} \right)^\xi
\]

- In two-dimensional approaches, exponent \(\xi\) depends on geometry of the turbulent volume
 - For a thin sheet \(\xi \rightarrow 2/3\)
 - For a thick sheet \(\xi \rightarrow 5/3\)

- In our approach, *directly simulate the three dimensional volume*
Simulations method
Simulating a turbulent volume

Generating large 3D Kolmogorov volumes

- **Array size** $\sim 15\text{km} \times 15\text{km}$
- **Wind:** $1\text{ hour} \times 10\text{ ms}^{-1} = 36\text{ km}$

Need to generate volumes with $> 10^9$ elements, aliasing makes FFT-based methods inefficient

See: http://www.mrao.cam.ac.uk/~bn204/alma/
Generating large 3D Kolmogorov volumes

- **Array size**: $\sim 15\text{km} \times 15\text{km}$
- **Wind**: $1\text{ hour} \times 10\text{ ms}^{-1} = 36\text{ km}$

Need to generate volumes with $> 10^9$ elements, aliasing makes FFT-based methods inefficient.
Alternative: Large-eddy simulation

- Alison Stirling’s memos
- Much more physics, more input parameters → likely to be much more accurate
- Computationally very expensive
- Not feasible to LES a large enough volume, at sufficient resolution, but a hybrid technique probably possible
Outline

1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
Two-dimensional Kolmogorov screen
Two-dimensional Kolmogorov screen + two adjacent screens
Adding slices produces steepening

1st slice

2nd slice

3rd slice

∑1st–10th slices
Adding slices produces steepening II

\[\sum_{1\text{st}–10\text{th slices}} \]

\[\sum_{10\text{th}–20\text{th slices}} \]

\[\sum_{20\text{th}–30\text{th slices}} \]

\[\sum_{1\text{st}–100\text{th slices}} \]
Line of sight effect

At zenith

10° from zenith

difference
Outline

1. Introduction
2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn
3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching
4. Summary/Links
No phase correction, long integration

Increasing magnitude of phase-fluctuations

Peak: 2 Jy
Peak: 1.66 Jy
No phase correction, long integration

Increasing magnitude of phase-fluctuations

Peak: 0.98 Jy

Peak: 0.45 Jy
No phase correction, snapshots
Sequence of snapshots separated by about 3 minutes in time
No phase correction, snapshots
Sequence of snapshots separated by about 3 minutes in time
No phase correction, snapshots
Sequence of snapshots separated by about 3 minutes in time
No phase correction, snapshots

Sequence of snapshots separated by about 3 minutes in time
No phase correction, snapshots
Sequence of snapshots separated by about 3 minutes in time
No phase correction, snapshots
Sequence of snapshots separated by about 3 minutes in time
Parametrisation of magnitude of phase fluctuation

- Have to specify somewhere how good/bad the atmospheric stability is
- Chose to do this by specifying the *phase* fluctuation RMS on a 300 m baseline
 - 300 m baseline to be able to relate directly to the site-testing interferometer data
 - Parametrisation in terms of phase to make clear the wavelength dependence
- The thickness of the turbulent layer is probably around ~ 200 m – several values shown in the plots below
Uncalibrated: point source sensitivity
Compact configuration

Point source sensitivity (relative to no atmospheric phase fluctuations) as function of phase rms on a 300 m baseline, for four thicknesses of the turbulent layer and no phase correction.
Uncalibrated: point source sensitivity
Medium configuration

Point source sensitivity (relative to no atmospheric phase fluctuations) as function of phase rms on a 300 m baseline, for four thicknesses of the turbulent layer and no phase correction.
Uncalibrated: point source sensitivity

Extended configuration

Point source sensitivity (relative to no atmospheric phase fluctuations) as function of phase rms on a 300 m baseline, for four thicknesses of the turbulent layer and no phase correction.
No phase correction: beam size
Medium configuration

Point-source sensitivity

Gaussian beam size
No phase correction: snapshot errors

Medium configuration

Positional error

Fractional flux error
Snapshot observation: sensitivity variance

Compact configuration

Standard deviation of relative point source sensitivity as function of phase rms on a 300 m baseline, for four thicknesses of the turbulent layer and no phase correction.
Snapshot observation: sensitivity variance

Medium configuration

Standard deviation of relative point source sensitivity as function of phase rms on a 300 m baseline, for four thicknesses of the turbulent layer and no phase correction.
Snapshot observation: sensitivity variance
Extended configuration

Standard deviation of relative point source sensitivity as function of phase rms on a 300 m baseline, for four thicknesses of the turbulent layer and no phase correction.
Outline

1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
Fast switching phase calibration
Medium configuration, 15 s cycle
Fast switching phase calibration

Compact configuration, 15 s cycle
Fast-switching calibration: point source sensitivity

Relative point source sensitivity, perfect fast-switching calibration with a 15 s duty cycle, 1.5 degree offset to calibrator, calibration transfer from lower frequency band.
Fast-switching calibration: point source sensitivity

Medium configuration

Relative point source sensitivity, perfect fast-switching calibration with a 15 s duty cycle, 1.5 degree offset to calibrator, calibration transfer from lower frequency band.
Fast-switching calibration: point source sensitivity

Extended configuration

Relative point source sensitivity, perfect fast-switching calibration with a 15 s duty cycle, 1.5 degree offset to calibrator, calibration transfer from lower frequency band.
Fast-switching: beamsize
15 s calibration cycle, 1.5 degree offset to calibrator

Point-source sensitivity

Gaussian beam size

B. Nikolic, et al (University of Cambridge) Simulating Atmospheric Phase Errors September 2008 33 / 41
Outline

1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
Radiometric phase correction

- Expected to work in combination with switching on a ~ 3 minute time scale
- Want to correct:
 - Phase fluctuation in between phase calibration scans
 - Phase error due to transfer of the phase solution from the quasar
- The specification is very ambitious:
 $$\delta p_{\text{rms}}^{\text{corrected}} = (1 + c)10 \mu m + 0.02 \times \delta p_{\text{rms}}^{\text{uncorrected}}$$ \hspace{1cm} (1)
 - The additive (left-hand) term is expected to be due to thermal noise in the radiometer, so Gaussian-distributed, uncorrelated between antennas, independent of baseline length
- Some encouraging test results, but:
 - Dry fluctuations?
 - Need to get the models almost perfect to meet the proportional part of error budget
183 GHz WVR Testing at SMA results

Total fluctuations (no running mean removed): σ_ϕ reduced from 271 to 75 μm
183 GHz WVR Testing at SMA results

Fluctuations from five minute average: σ_ϕ reduced from 164 to 56 μm
WVR phase correction: point source sensitivity

Assuming wet path fluctuations only and to-spec performance

If to-spec:

![Graph showing the relationship between ϕ_{rms} (rad) and sensitivity S.]
Outline

1. Introduction

2. Simulations method
 - Framework
 - Simulating a turbulent volume
 - 2d projections and steepening of structure fn

3. Results
 - Results without phase correction
 - Fast-switching phase calibration
 - WVR + Fast-switching

4. Summary/Links
If phase correction techniques work as well as we hope, the user will only ever need to include thermal-like phase errors in simulations.

Simulations useful for algorithms development, especially as a fully 2D array at the high site is at least a couple of years away.

In this case, the simulations steps are separable, linked by a standard file format:
- Can easily use a range of available tools
- Easy to integrate own tools
- Components can be easily re-used in other projects

Full writeup, results, code available at:

http://www.mrao.cam.ac.uk/~bn204/alma/memo-turb
Workshop on Simulations for ALMA, Grenoble 2008
http://www.mrao.cam.ac.uk/~bn204/almasim08/

B. Nikolic, et al.
Simulating Atmospheric Phase Errors, Phase Correction and the Impact on ALMA Science
ALMA Memo to be published
http://www.mrao.cam.ac.uk/~bn204/alma/

W. Cotton
Astronomy Software for Algorithm Development
http://www.cv.nrao.edu/~bcotton/Obit.html
References/Links II

B. Nikolic, et al
Phase Correction for ALMA: Adaptive Optics in the Submillimetre
http://www.eso.org/sci/publications/messenger/archive/no.131-mar08/

Lane R. G., Glindemann A., Dainty J. C., 1992, Waves in Random Media, 2, 209

Carilli C. L., Holdaway M. A., 1999, Tropospheric phase calibration in millimeter interferometry. ALMA Memo Series 262, NRAO

—, 2004, Does the aca need phase compensation? ALMA Memo Series 491, The ALMA Project

Holdaway M. A., Owen F. N., 1995, A test of fast switching phase calibration with the vla at 22 ghz. ALMA Memo Series 126, The ALMA Project