Source code for processing_components.calibration.modelpartition

""" Radio interferometric calibration using an expectation maximisation algorithm

See the SDP document "Model Partition Calibration View Packet"

In this code:

- A single model parition is taken to be a list composed of (skymodel, gaintable) tuples.

- The E step for a specific model partition is the sum of the partition data model and the discrepancy between the
    observed data and the summed (over all partitions) data models.


- The M step for a specific partition is the optimisation of the model partition given the model partition. This
    involves fitting a skycomponent and fitting for the gain phases.

"""

import logging

import numpy

from data_models.memory_data_models import BlockVisibility
from processing_components.calibration.calibration import solve_gaintable
from processing_components.calibration.operations import copy_gaintable, apply_gaintable, \
    create_gaintable_from_blockvisibility, qa_gaintable
from processing_components.skymodel.operations import copy_skymodel
from processing_components.skymodel.operations import predict_skymodel_visibility, solve_skymodel
from processing_components.visibility.coalesce import convert_blockvisibility_to_visibility
from processing_components.visibility.operations import copy_visibility

log = logging.getLogger(__name__)


[docs]def create_modelpartition(vis: BlockVisibility, skymodels, **kwargs): """Create a set of associations between skymodel and gaintable :param vis: BlockVisibility to process :param skymodels: List of skyModels :param kwargs: :return: """ gt = create_gaintable_from_blockvisibility(vis, **kwargs) return [(copy_skymodel(sm), copy_gaintable(gt)) for sm in skymodels]
[docs]def solve_modelpartition(vis, skymodels, niter=10, tol=1e-8, gain=0.25, **kwargs): """ Solve for model partitions Solve by iterating, performing E step and M step. :param vis: Initial visibility :param components: Initial components to be used :param gaintables: Initial gain tables to be used :param kwargs: :return: The individual data models and the residual visibility """ model_partition = create_modelpartition(vis, skymodels=skymodels, **kwargs) for iter in range(niter): new_modelpartitions = list() evis_all = modelpartition_expectation_all(vis, model_partition) log.debug("solve_modelpartition: Iteration %d" % (iter)) for window_index, csm in enumerate(model_partition): evis = modelpartition_expectation_step(vis, evis_all, csm, gain=gain, **kwargs) new_csm = modelpartition_maximisation_step(evis, csm, **kwargs) new_modelpartitions.append((new_csm[0], new_csm[1])) flux = new_csm[0].components[0].flux[0, 0] qa = qa_gaintable(new_csm[1]) residual = qa.data['residual'] rms_phase = qa.data['rms-phase'] log.debug("solve_modelpartition:\t Window %d, flux %s, residual %.3f, rms phase %.3f" % (window_index, str(flux), residual, rms_phase)) model_partition = [(copy_skymodel(csm[0]), copy_gaintable(csm[1])) for csm in new_modelpartitions] residual_vis = copy_visibility(vis) final_vis = modelpartition_expectation_all(vis, model_partition) residual_vis.data['vis'][...] = vis.data['vis'][...] - final_vis.data['vis'][...] return model_partition, residual_vis
[docs]def modelpartition_fit_skymodel(vis, modelpartition, gain=0.1, **kwargs): """Fit a single skymodel to a visibility :param evis: Expected vis for this ssm :param modelpartition: scm element being fit i.e. (skymodel, gaintable) tuple :param gain: Gain in step :param kwargs: :return: skymodel """ if modelpartition[0].fixed: return modelpartition[0] else: cvis = convert_blockvisibility_to_visibility(vis) return solve_skymodel(cvis, modelpartition[0], **kwargs)
[docs]def modelpartition_fit_gaintable(evis, modelpartition, gain=0.1, niter=3, tol=1e-3, **kwargs): """Fit a gaintable to a visibility This is the update to the gain part of the window :param evis: Expected vis for this ssm :param modelpartition: csm element being fit :param gain: Gain in step :param niter: Number of iterations :param kwargs: Gaintable """ previous_gt = copy_gaintable(modelpartition[1]) gt = copy_gaintable(modelpartition[1]) model_vis = copy_visibility(evis, zero=True) model_vis = predict_skymodel_visibility(model_vis, modelpartition[0]) gt = solve_gaintable(evis, model_vis, gt=gt, niter=niter, phase_only=True, gain=0.5, tol=1e-4, **kwargs) gt.data['gain'][...] = gain * gt.data['gain'][...] + (1 - gain) * previous_gt.data['gain'][...] gt.data['gain'][...] /= numpy.abs(previous_gt.data['gain'][...]) return gt
[docs]def modelpartition_expectation_step(vis: BlockVisibility, evis_all: BlockVisibility, modelpartition, **kwargs): """Calculates E step in equation A12 This is the data model for this window plus the difference between observed data and summed data models :param evis_all: Sum data models :param csm: csm element being fit :param kwargs: :return: Data model (i.e. visibility) for this csm """ evis = copy_visibility(evis_all) tvis = copy_visibility(vis, zero=True) tvis = predict_skymodel_visibility(tvis, modelpartition[0], **kwargs) tvis = apply_gaintable(tvis, modelpartition[1]) evis.data['vis'][...] = tvis.data['vis'][...] + vis.data['vis'][...] - evis_all.data['vis'][...] return evis
[docs]def modelpartition_expectation_all(vis: BlockVisibility, modelpartitions, **kwargs): """Calculates E step in equation A12 This is the sum of the data models over all skymodel :param vis: Visibility :param csm: List of (skymodel, gaintable) tuples :param kwargs: :return: Sum of data models (i.e. a visibility) """ evis = copy_visibility(vis, zero=True) tvis = copy_visibility(vis, zero=True) for csm in modelpartitions: tvis.data['vis'][...] = 0.0 tvis = predict_skymodel_visibility(tvis, csm[0], **kwargs) tvis = apply_gaintable(tvis, csm[1]) evis.data['vis'][...] += tvis.data['vis'][...] return evis
[docs]def modelpartition_maximisation_step(evis: BlockVisibility, modelpartition, **kwargs): """Calculates M step in equation A13 This maximises the likelihood of the ssm parameters given the existing data model. Note that the skymodel and gaintable are done separately rather than jointly. :param ssm: :param kwargs: :return: """ return (modelpartition_fit_skymodel(evis, modelpartition, **kwargs), modelpartition_fit_gaintable(evis, modelpartition, **kwargs))