Publications

Below is a list of publications by the Geometric Algebra Research Group. Click on the title of a paper to read its abstract. PDF and Postscript files of most of the papers are available. The postscript versions of the papers have been compressed using the gzip utility, which can be freely downloaded from any of the GNU ftp sites (UK mirror). If your browser does not automatically decompress the file then save it, decompress it manually and view it with a postscript viewer such as Ghostview/GSview.

Some versions of Internet Explorer automatically decompress gzip files, but do not alter the file extension. If you are having problems reading the .ps.gz files, check that they have not already been decompressed.

2005

Anthony Lasenby, Chris Doran and Reece Heineke
Analytic solutions to Riemann-squared gravity with background isotropic torsion
gr-qc/0509014

Alejandro Caceres and Chris Doran
Minimax determination of the energy spectrum of the Dirac equation in a Schwarzschild background
Phys. Rev. A (to appear)

Anthony Lasenby and Chris Doran
Closed Universes, de Sitter Space and Inflation
Phys.Rev. D 71, 063502 (2005)

Anthony Lasenby
Conformal Geometry and the Universe
Phil.Trans.R.Soc.Lond.A (to appear)

Chris Doran and Anthony Lasenby
Integral equations, Kerr-Schild fields and gravitational sources
gr-qc/0404081

Chris Doran, Anthony Lasenby, Sam Dolan and Ian Hinder
Fermion absorption cross section of a Schwarzschild black hole
Phys.Rev. D 71, 124020 (2005)

Rich Wareham, Jonathan Cameron, and Joan Lasenby
Applications of Conformal Geometric Algebra in Computer Vision and Graphics

H. Li, P. J. Olver and G. Sommer (Eds.): IWMM 2004, LNCS 3519, pp. 329–349, 2005. Springer-Verlag (2005)

Anthony Lasenby
Recent Applications of Conformal Geometric Algebra
H. Li, P. J. Olver and G. Sommer (Eds.): IWMM 2004, LNCS 3519 Springer-Verlag (2005)

Suguru Furuta
Control and Measurement of Quantum Spins: Theory and Simulations
PhD Thesis (2005)

2004

Anthony Lasenby and Chris Doran
Conformal models of de Sitter space, initial conditions for inflation and the CMB
Proceedings 'Phi in the Sky', Porto, 2004

Chris Doran
Circle and sphere blending with conformal geometric algebra
cs.CG/0310017

Timothy Havel and Chris Doran
A Bloch-Sphere-Type Model for Two Qubits in the Geometric Algebra of a 6-D Euclidean Vector Space
Proc. SPIE, vol. 5436 (Quantum Information and Computation II, E Donkor, A. R. Pirich & H. E. Brandt, eds.), pp. 93-106 (2004)

Suguru Furuta, Crispin Barnes and Chris Doran
Single-qubit gates and measurements in the surface acoustic wave quantum computer
Phys. Rev. B 70, 205320 (2004)

2003

Chris Doran and Anthony Lasenby
Geometric Algebra for Physicists
Cambridge University Press (2003)

Chris Doran and Anthony Lasenby
New Techniques for Analysing Axisymmetric Gravitational Systems. 1. Vacuum Fields
Class.Quant.Grav. 20, 1077-1102 (2003)

T.F. Havel, C.J.L. Doran and S. Furuta
Density Operators in the Multiparticle Spacetime Algebra
Proc. Royal. Soc. (to appear)

A.N. Lasenby, C.J.L. Doran and E. Arcaute
Applications of Geometric Algebra in Electromagnetism, Quantum Mechanics and Gravity
In R. Ablamowicz, ed. Sixth International Conference on Clifford Algebras and their Applications, Tennessee 2002, p. 467, Birkhauser (2003)

2002

Anthony Lasenby, Chris Doran, Jonathan Pritchard, Alejandro Caceres and Sam Dolan
Bound States and Decay Times of Fermions in a Schwarzschild Black Hole Background
gr-qc/0209090

C.J.L. Doran and A.N. Lasenby
Perturbation Theory Calculation of the Black Hole Elastic Scattering Cross Section
Phys. Rev. D, 66(2), 024006 (2002)

C.E. Dolby and S.F. Gull
State-Space Based Approach to Particle Creation in Spatially Uniform Electric Fields
Annals Phys. 297, 315-343 (2002)

Chris Doran, Anthony Lasenby and Joan Lasenby
Conformal Geometry, Euclidean Space and Geometric Algebra
In J. Winkler ed Uncertainty in Geometric Computations, p.41 Kluwer (2002)

R.F. Parker and C.J.L. Doran
Analysis of 1 and 2 Particle Quantum Systems using Geometric Algebra
In C. Doran, L. Dorst and J. Lasenby eds. Applied Geometrical Alegbras in computer Science and Engineering, AGACSE 2001, p.213, Birkhauser (2002).

T.F. Havel and C.J.L. Doran
Interaction and Entanglement in the Multiparticle Spacetime Algebra
In C. Doran, L. Dorst and J. Lasenby eds. Applied Geometrical Alegbras in computer Science and Engineering, AGACSE 2001, p. 227, Birkhauser (2002)

R.C.D. Baker and C.J.L. Doran
Jet Bundles and the Formal Theory of Partial Differential Equations
In C. Doran, L. Dorst and J. Lasenby eds. Applied Geometrical Alegbras in computer Science and Engineering, AGACSE 2001, p. 133, Birkhauser (2002)

Anthony Lasenby and Chris Doran
Geometric Algebra, Dirac Wavefunctions and Black Holes
In P.G. Bergmann and V. de Sabbata eds, Advances in the Interplay Between Quantum and Gravity Physics, Kluwer 2002, 251-283

2001

C.J.L. Doran et. al
Geometric Algebra
Course notes for the 28th International Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2001, Course 53.

A. Lewis, C.J.L. Doran and A.N. Lasenby.
Electron scattering without spin sums.
Int. J. Theor. Phys. 40(1) (2001)

Carl Dolby
A state-space based approach to quantum field theory in classical background fields
PhD Thesis (2001)

C.E. Dolby and S.F. Gull
New approach to quantum field theory for arbitrary observers in electromagnetic backgrounds
Annals of Physics 293, 189-214 (2001)

C.E. Dolby and S.F. Gull
On radar time and the twin `paradox'
Am. J. Phys. 69, 1257-1261 (2001)

Anthony Lasenby and Joan Lasenby
Surface Evolution and Representation using Geometric Algebra
In Roberto Cipolla and Ralph Martin eds. The Mathematics of Surfaces IX: Proceedings of the ninth IMA conference on the mathematics of surfaces, p144-168, Springer, London (2001)

2000

C.J.L. Doran
A new form of the Kerr solution
Phys. Rev. D 61(6), 067503 (2000)

C.J.L. Doran et. al
Geometric Algebra: New Foundations, New Insights
Course notes for the 27th International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, Course

C.J.L. Doran
Bayesian inference and geometric algebra: an application to camera localization
In: E. Bayro and G. Sobczyk eds. Geometric algebra: a geometric approach to computer vision, neural and quantum computing, robotics and engineering. Birkhauser, 172 (2000)

J. Lasenby and A. Stevenson
Using geometric algebra in optical motion capture
In: E. Bayro and G. Sobczyk eds. Geometric algebra: a geometric approach to computer vision, neural and quantum computing, robotics and engineering. Birkhauser (2000)

A.N. Lasenby and J Lasenby
Applications of Geometric Algebra in Physics and Links with Engineering
In: E. Bayro and G. Sobczyk eds. Geometric algebra: a geometric approach to computer vision, neural and quantum computing, robotics and engineering. Birkhauser (2000)

J. Lasenby, A.N. Lasenby and C.J.L. Doran
A unified mathematical language for physics and engineering in the 21st century
Phil. Trans. R. Soc. Lond. A 358, 21-39 (2000)

T.F. Havel and C.J.L. Doran
Geometric algebra in quantum information processing
In S. Lomonaco, ed. Quantum Computation and Quantum Information Science. AMS Contemporary Math series (2000). quant-ph/0004031

A. Lewis, C. Doran and A.N. Lasenby.
Quadratic Lagrangians and topology in gauge theory gravity
General Rel. Grav. 32(1), 161 (2000)

A. Lewis, A.N. Lasenby and C.J.L. Doran.
Electron scattering in the spacetime algebra
R. Ablamowicz and B. Fauser eds., 5th International Conference on Applications of Clifford Algebra, Ixtapa, Mexico 1999, 49-71 (2000)

1999

S.S. Somaroo, A.N. Lasenby and C.J.L. Doran
Geometric algebra and the causal approach to multiparticle quantum mechanics
J. Math. Phys. 40(7), 3327-3340 (1999).

A.N. Lasenby, C.J.L. Doran, M.P. Hobson, Y.Dabrowski and A.D. Challinor
Microwave Background Anisotropies and Nonlinear Structures I. Improved Theoretical Models.
Mon. Not. R. Astron. Soc. 302, 748--756 (1999).

Y.Dabrowski, M.P. Hobson, A.N. Lasenby and C.J.L. Doran.
Microwave Background Anisotropies and Nonlinear Structures II. Numerical computations.
Mon. Not. R. Astron. Soc. 302, 757--770 (1999).

1998

A. N. Lasenby, C. J. L. Doran and S. F. Gull.
Gravity, gauge theories and geometric algebra
Phil. Trans. R. Soc. Lond. A356, 487-582 (1998).

J. Lasenby, W. J. Fitzgerald, C. J. L. Doran and A. N. Lasenby.
New Geometric Methods for Computer Vision
Int. J. Comp. Vision 36(3), p. 191-213 (1998).

C. J. L. Doran
Integral equations and Kerr-Schild fields I. Spherically-symmetric fields
Preprint (1998)

C. J. L. Doran, A. N. Lasenby and S. F. Gull
Integral equations and Kerr-Schild fields II. The Kerr solution
Preprint (1998)

M. A. J. Ashdown, S. S. Somaroo, S. F. Gull, C. J. L. Doran and A. N. Lasenby
Multilinear Representations of Rotation Groups within Geometric Algebra
J. Math. Phys. 39(3), 1566-1588 (1998).

C.J.L Doran, A.N. Lasenby, A.D. Challinor and S.F. Gull
Effects of spin-torsion in gauge theory gravity
J. Math. Phys. 39(6), 3303--3321 (1998).

A. D. Challinor and A. N. Lasenby
A covariant and gauge-invariant analysis of cosmic microwave background anisotropies from scalar perturbations.
Phys.Rev. D 58 (1998)

1997

A. D. Challinor, A. N. Lasenby, S. S. Somaroo, C. J. L. Doran and S. F. Gull.
Tunnelling times of electrons
Phys. Lett. A, 227, 143-152 (1997).

A.D. Challinor, A.N. Lasenby, C.J.L. Doran and S.F. Gull
Massive, non-ghost solutions for the Dirac field coupled self-consistently to gravity
General Rel. Grav. 29, 1527 (1997).

A. N. Lasenby, C. J. L. Doran, Y. Dabrowski and A. D. Challinor.
Rotating astrophysical systems and a gauge theory approach to gravity
In N. Sanchez and A. Zichini, editors, Current Topics in Astrofundamental Physics, Erice 1996. (World Scientific Publishing Co., 1997)p. 380-403.

J. Lasenby, E. Bayro-Corrochano, A. Lasenby and G. Sommer.
A new framework for the computation of invariants and multiple view constraints in computer vision
Proceedings of the International Conference on Image Processing (ICIP), 1996, (1997).

Jeff Tomasi
Cylindrically symmetric systems in gauge theory gravity
Masters Thesis

1996

Chris Doran, Anthony Lasenby, Stephen Gull, Shyamal Somaroo and Anthony Challinor.
Spacetime Algebra and Electron Physics
In P. W. Hawkes, editor, Advances in Imaging and Electron Physics, Vol. 95, p. 271-386 (Academic Press, 1996).

A. N. Lasenby, C. J. L. Doran and S. F. Gull.
Lectures in Geometric Algebra
In W. E. Baylis, editor, Clifford (Geometric) Algebras with Applications to Physics, Mathematics and Engineering. (Birkhäuser Boston, 1996).

J. Lasenby.
Geometric algebra: applications in engineering
In W. E. Baylis, editor, Clifford (Geometric) Algebras with Applications to Physics, Mathematics and Engineering. (Birkhäuser Boston, 1996).

A. D. Challinor, A. N. Lasenby, S. F. Gull and C. J. L. Doran.
A relativistic, causal account of spin measurement
Phys. Lett. A 218, 128-138 (1996).

S. S. Somaroo.
Applications of the Geometric Algebra to Relativistic Quantum Theory
Ph.D. thesis, University of Cambridge (1996).

S. F. Gull, A. N. Lasenby and C. J. L. Doran
Geometric algebra, spacetime physics and gravitation.
In O. Lahav, E. Terlevich and R. J. Terlevich, editors, Gravitational Dynamics, (Cambridge University Press, 1996), pp. 171-180.

C. J. L. Doran, A. N. Lasenby and S. F. Gull.
The physics of rotating cylindrical strings
Phys. Rev. D 54(10), 6021-6031 (1996).

J. Lasenby, E. Bayro-Corrochano, A.N. Lasenby and G. Sommer.
Geometric Algebra: a Framework for Computing Invariants in Computer Vision
Proceedings of the International Conference on Pattern Recognition (ICPR '96), Vienna.

E. Bayro-Corrochano, J. Lasenby and G. Sommer.
Geometric Algebra: a framework for computing point and line correspondences and projective structure using n uncalibrated cameras
Proceedings of the International Conference on Pattern Recognition (ICPR '96), Vienna.

1995

A. N. Lasenby, C. J. L. Doran and S. F. Gull.
Astrophysical and Cosmological Consequences of a Gauge Theory of Gravity
In N. Sanchez and A. Zichichi, eds. Advances in Astrofundamental Physics. Erice 1994 (World Scientific Publishing Co., 1995), p. 359-401.

1994

C J. L. Doran.
Geometric Algebra and its Application to Mathematical Physics
Ph.D. thesis, University of Cambridge (1994).

1993

C. J. L. Doran, A. N. Lasenby and S. F. Gull.
Grassmann Mechanics, Multivector Derivatives and Geometric Algebra
In Z. Oziewicz, A. Borowiec and B. Jancewicz, editors, Spinors, Twistors, Clifford Algebras and Quantum Deformations (Kluwer Academic, Dordrecht, 1993), p. 215-226.

A. N. Lasenby, C. J. L. Doran and S. F. Gull.
2-spinors, Twistors and Supersymmetry in the Spacetime Algebra
In Z. Oziewicz, A. Borowiec and B. Jancewicz, editors, Spinors, Twistors, Clifford Algebras and Quantum Deformations (Kluwer Academic, Dordrecht, 1993), p.233-245.

A. N. Lasenby, C. J. L. Doran and S. F. Gull.
Grassmann Calculus, Pseudoclassical Mechanics and Geometric Algebra
J. Math. Phys. 34(8), 3683-3712 (1993).

C. J. L. Doran, D. Hestenes, F. Sommen and N. van Acker.
Lie Groups as Spin Groups
J. Math. Phys. 34(8), 3642-3669 (1993).

S. F. Gull, A. N. Lasenby and C. J. L. Doran.
Imaginary Numbers are not Real - the Geometric Algebra of Spacetime
Found. Phys. 23(9), 1175-1201 (1993)

C. J. L. Doran, A. N. Lasenby and S. F. Gull.
States and Operators in the Spacetime Algebra
Found. Phys. 23(9), 1239-1264 (1993)

A. N. Lasenby, C. J. L. Doran and S. F. Gull.
A Multivector Derivative Approach to Lagrangian Field Theory
Found. Phys. 23(10), 1295-1327 (1993)

S. F. Gull, A. N. Lasenby and C. J. L. Doran.
Electron Paths, Tunnelling and Diffraction in the Spacetime Algebra
Found. Phys. 23(10), 1329-1356 (1993)

C. J. L. Doran, A. N. Lasenby and S. F. Gull.
Gravity as a Gauge Theory in the Spacetime Algebra
In F. Brackx and R. Delanghe, editors, Clifford Algebras and their Applications in Mathematical Physics. Deinze 1993 (Kluwer Academic, Dordrecht, 1993), p. 375-385.

A. N. Lasenby, C. J. L. Doran and S. F. Gull.
Cosmological Consequences of a Flat-Space Theory of Gravity
In F. Brackx and R. Delanghe, editors, Clifford Algebras and their Applications in Mathematical Physics. Deinze 1993 (Kluwer Academic, Dordrecht, 1993), p. 387-396.

1992

1991

S. F. Gull.
Charged Particles at Potential Steps
In A. Weingartshofer and D. Hestenes, editors, The Electron (Kluwer Academic, Dordrecht, 1991), p. 37-48.

 


Maintained by Chris Doran