Memory data models

data_models.memory_data_models Module

The data models used in ARL:

Classes

Configuration([name, data, location, names, …])

Describe a Configuration as locations in x,y,z, mount type, diameter, names, and overall location

GainTable([data, gain, time, interval, …])

Gain table with data_models: time, antenna, gain[:, chan, rec, rec], weight columns

PointingTable([data, pointing, nominal, …])

Pointing table with data_models: time, antenna, offset[:, chan, rec, 2], weight columns

Image([data, wcs, polarisation_frame])

Image class with Image data (as a numpy.array) and the AstroPy implementation of a World Coodinate System

GridData([data, grid_wcs, projection_wcs, …])

Class to hold Gridded data for Fourier processing - Has four or more coordinates: [chan, pol, z, y, x] where x can be u, l; y can be v, m; z can be w, n

ConvolutionFunction([data, grid_wcs, …])

Class to hold Gridded data for Fourier processing - Has four or more coordinates: [chan, pol, z, y, x] where x can be u, l; y can be v, m; z can be w, n

Skycomponent([direction, frequency, name, …])

Skycomponents are used to represent compact sources on the sky.

SkyModel([image, components, gaintable, …])

A model for the sky, including an image, components, gaintable and a mask

Visibility([data, frequency, …])

Visibility table class

BlockVisibility([data, frequency, …])

Block Visibility table class

QA([origin, data, context])

Quality assessment

ScienceDataModel()

Science Data Model