Polarisation¶
data_models.polarisation Module¶
Functions for defining polarisation conventions. These include definitions via classes and conversion functions.
For example:
stokes = numpy.array(random.uniform(-1.0, 1.0, [3, 4, 128, 128]))
ipf = PolarisationFrame('stokesIQUV')
opf = PolarisationFrame('circular')
cir = convert_pol_frame(stokes, ipf, opf)
st = convert_pol_frame(cir, opf, ipf)
or:
stokes = numpy.array([1, 0.5, 0.2, -0.1])
circular = convert_stokes_to_circular(stokes)
These function operate on Numpy arrays. These are packaged for use in Images. The Image functions are probably more useful.
Functions¶
|
Are these receptor and polarisation frames congruent? |
|
Convert Circular to Stokes IQUV |
|
Convert Circular to Stokes I |
|
Convert Linear to Stokes IQUV |
|
Convert Linear to Stokes I |
|
|
|
Convert Stokes IQUV to Circular |
|
Convert Stokes IQUV to Linear |
|
Gives the polarisation frame corresponding to a receptor frame |
|
Matrix multiply of appropriate axis of vec […,:] by cm |
Classes¶
|
Define polarisation frames post correlation |
|
Define polarisation frames for receptors |